• Title/Summary/Keyword: River restoration

Search Result 552, Processing Time 0.03 seconds

Relationship between fish assemblages community and Streamline complexity (어류군집 특성과 하안형태복잡도와의 관계)

  • Kim, Jin-Ah;Lee, Sang-Woo;Hwang, Gil-Son;Kim, Chulgoo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Numerous studies suggested that fish assemblage structure reflects the status of stream ecosystems. The status of streams integrity, including various trophic levels, water quality and habitat degradation, can be assessed by fish assemblages. In this study, we investigated the relationships between fish assemblages and streamline geometry of streams. Previous studies suggested that geomorphologic parameter can be a critical factor of permeability between adjacent two systems. From a landscape ecological perspective, edges may partially control the flow rate of energy between two adjacent systems. Thus, the Streamline geometry can be a geomorphologic parameter that exhibits the integrity of stream. We selected the Nakdong river for study areas, which is one of major rivers and the longest (525 km) River in South Korea. We used the revised IBI representing overall ecological characteristics of Korean fish assemblages and eight sub-assessment criteria of IBI, collected from 82 sampling sites in the Nakdong River. For calculating the Streamline geometry, we measured fractal dimension index that generally used in biology, ecology and landscape ecology. We used the digital land-use/land-cover map and generated a 1-km buffer for each sampling site and refined the shape of the Streamlines. Pearson correlation analyses were performed between Streamline geometry and IBI and sub-assessment criteria of IBI. The results show that IBI and eight sub-assessments of fish are significantly correlated with geometry of Streamline. The fractal dimension of Streamline geometry were related with IBI (r = 0.48) and six sub-assessments of IBI, including total number of native fish and native species, the number of riffle benthic species, sensitive species, tolerant species and native insectivore. Especially, the number of tolerant species(r = -0.52) and native insectivore(r = 0.52) show strong correlation with geometry of Streamline. These results indicate that lower Streamline geometry can result in poor fish assemblages, while higher geometry of Streamline can enhance fish assemblages by potentially supplying insects and better habitat conditions. We expect the results of our study to be useful for stream restoration and management. However, we see the necessity of study investigating the mechanisms how Streamline geometry affect fish assemblages.

Application of Eco-hydraulics Principles in Rehabilitation of Urban River System

  • Meiyan, Feng;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.446-446
    • /
    • 2018
  • The urban rivers have unique hydraulic characteristics between natural rivers and artificial canals. These hydraulic characteristics determine the characteristics of urban rivers with small environmental capacity and fragile ecosystems. With the development and utilization of natural resources, the pollutants that have been produced enter the river through different channels, which seriously damages the urban river ecosystem. Therefore, how to restore contaminated water to a normal state and reproduce a natural, self-regulating ecosystem is one of the most concerned issues in recently. Eco-hydraulics is a cross-disciplinary subject of hydraulics biology and ecology. It is closely related to the protection of rivers, wetlands, and ecological self-repair. In this study, The basic principle of eco-hydraulics is concisely described and its approaches to protection and rehabilitation of river are introduced. The conception of establishing gardenesque eco-pond for urban use is suggested. The strategies including changing the hydrodynamic features of rivers, adjusting the breeds and species and constructing the gardenesque eco-pond for improving the exist ing urban rivers are proposed. It provides scientific information and guidance for the restoration of rivers and wetlands by studying the close relationship between river hydraulic characteristics, currents, and rivers and ecosystems.

  • PDF

Monitoring on Bolboschoenus planiculmis Restoration in Nakdong River Estuary: Implications for Wetland Restoration Using Shoot Transplantation (낙동강하구 새섬매자기(Bolboschoenus planiculmis) 복원 모니터링: 식물체(shoot) 식재를 이용한 습지복원)

  • Gu-Yeon Kim;Hee Sun Park;Hwa Young Kim;Ji-Young Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.406-414
    • /
    • 2022
  • Bolboschoenus planiculmis has been acknowledged as a key species in whooper swans (Cygnus cygnus) habitat by providing food for this migratory waterfowl. B. planiculmis wetlands are being degraded by water shortages and salinization caused by anthropogenic activities and climate changes. In 2004, the distribution of B. planiculmis in the tidal flats of the Nakdong Estuary was 2,475,568 m2, and in 2021, the distribution area was 798,731 m2, which decreased by 32.3%. In order to restore the degraded B. planiculmis wetlands, shoot transplantation and seed sowing were tentatively used in three places with different salinity and water levels. The average density per unit area in September at the optimal growth period after planting were A (fresh water level 50 cm) 58±15.65 m-2, B (brackish water level 0~5 cm) 188±63.83 m-2, C (brackish water level 0 cm or less) 188±45.13 m-2. The tubers were observed as A 0 g dw m-2, B 25.32±2.94 g dw m-2, and C 13.39±0.91 g dw m-2. Tubers were distributed in the soil, with only 3.0% at the 10~20 cm depth but 97.0% at the 0~10 cm depth. In contrast, the germination rate of B. planiculmis seeds was observed to be 0%. Results of this study provide technical support for the restoration of B. planiculmis wetland and the improvement in the quality of whooper swans habitat.

Conservation potential of North American large rivers: the Wabash River compared with the Ohio and Illinois rivers

  • Pyron, Mark;Muenich, Rebecca Logsdon;Casper, Andrew F.
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.15.1-15.14
    • /
    • 2020
  • Background: Large rivers are ecological treasures with high human value, but most have experienced decades of degradation from industrial and municipal sewage, row-crop agricultural practices, and hydrologic alteration. We reviewed published analyses of long-term fish diversity publications from three intensively managed large river ecosystems to demonstrate the conservation potential of large river ecosystems. Results: We show how the incorporation of recent advances in river concepts will allow a better understanding of river ecosystem functioning and conservation. Lastly, we focus on the Wabash River ecosystem based on high conservation value and provide a list of actions to maintain and support the ecosystem. In the Wabash River, there were originally 66 species of freshwater mussels, but now only 30 species with reproducing populations remain. Although there were multiple stressors over the last century, the largest change in Wabash River fish biodiversity was associated with rapid increases in municipal nutrient loading and invasive bigheaded carps. Conclusions: Like similarly neglected large river systems worldwide, the Wabash River has a surprising amount of ecological resilience and recovery. For instance, of the 151 native fish species found in the 1800s, only three species have experienced local extinctions, making the modern assemblage more intact than many comparable rivers in the Mississippi River basin. However, not all the changes are positive or support the idea of recovery. Primary production underpins the productivity of these ecosystems, and the Wabash River phytoplankton assemblages shifted from high-quality green algae in the 1970s to lower less nutritional blue-green algae as nutrient and invasive species have recently increased. Our recommendations for the Wabash River and other altered rivers include the restoration of natural hydrology for the mainstem and tributaries, nutrient reductions, mechanisms to restore historical hydrologic patterns, additional sediment controls, and improved local hydraulics.

Value Estimation for Environmental Resources of Natural river Using Conjoint Analysis - Focused on small River of Incheon Metropolitan City - (컨조인트 분석을 이용한 자연형 하천에 대한 환경자원의 가치추정 - 인천광역시 소하천을 중심으로 -)

  • Lee, Kyung-Su;Kim, Tae-Hyeong;Ryu, Jae-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.417-431
    • /
    • 2014
  • There is a Conjoint Analysis to estimate the environmental value of natural river restoration project of Inchon Metropolitan City's small River: Gong-chon Stream, Gul-po Stream, Seung-gi Stream, Jang-su Stream. In order to find out the optimal expense condition, we tried to estimate the possible payable amount. According to the analysis, almost all people are willing to pay 15,000 Won. In case of the river types, the people liked 10 cm's depth of water and there should be brook trail, convenient facilities and flood plain at the stream edge space. But it is impossible to build these facilities with minimum fare 15,000 Won per a household. If the necessary expenses set high, the tax resistance of the local residents will be increased. So, in consideration of the analytical results of the attribute level, we draw five alternatives. This study is based on the results of Incheon metropolitan City residents' survey, and there is Conjoint Analysis to estimate the environmental value of natural-type river project of Incheon metropolitan City. If it is reflected the special assume factors of this study, and if there is exact environmental value estimation of the various river quality through different analysis, then it will become a study of high utilizing.

An Analytical Study of Foreign Researches and Examples on Ecological Restoration for the Small Stream (샛강 생태복원을 위한 해외 사례 연구의 고찰)

  • Kwon, Tae-Ho;Park, Jae-Hyeon;Kim, Dong-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.26-37
    • /
    • 2004
  • Most domestic small rivers and streams due to industrialization and urbanization have managed by concrete structures. The environmental functions of the river and stream are disappearing and urban streams play only the role of drainage systems. Also, the researches to restore natural streams are something yet to develop and not established the restoration for ecological functions of a small stream. Therefore the researches are required to develop ecological engineering system for watershed management system to handle various pollutants with restoration for ecological functions of a small stream. To develop this, the ecological engineering system for watershed management system could be developed with ecological conservation. In addition, ecological engineering system for watershed management system should be prior to conserve the habitat of biological resources and water conservation and applied to the original shape of streams. Also, it should be designed to restore the micro-topography of stream, the habitat of plant population in watershed. It is needed to develop the integrated researches to restore a small stream ecosystem.

Effects of Submerged Spur Dikes on the Ecosystem and Bed Deformation in Youngcheon River Bend (영천강 만곡부의 저수수제군이 생태계 및 하상변동에 미치는 효과)

  • Kim, Ki Heung;Lee, Hyeong-Rae;Jung, Hea Reyn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.137-153
    • /
    • 2013
  • In order to assess the effects of ecosystem and landscape in around spur dikes, this study had carried out monitoring on the changes of ecosystem and morphologic characteristics in around spur dikes that had been settled in bend of Youngcheon River. The study site was a short reach with length 190m, spur dikes were installed in March, 2008. Monitoring of the site had been started in May 2008 and had been completed September 2011. The results are as follow ; 1) Spur dikes that were installed for channel stabilization are performing effectively hydraulic functions at flooding time. 2) Spur dikes that were installed in water colliding front of river bend brought about sediment deposition between those and formed pools around front of those. Therefore, it was verified to create various physical characteristics in the aspect of channel topography and flow consequently. 3) The survey results that was carried out in October 2008 showed to emerge 25 species of plant, 9 species of fish and 17 species of benthic macroinvertebrates, but the survey results in October 2010 showed to emerge 74 species of plant, 12 species of fish and 19 species of benthic macroinvertebrates. In particular, plant species that emerged in 2011 increased about three times more than those in 2008.

Study on Evaluation Method Development of River Disturbance (하천교란 평가기법 연구)

  • Kim, Ki-Heung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.633-637
    • /
    • 2007
  • 하천환경 복원사업이나 자연형하천 정비사업의 근본 목표는 그 하천 고유의 하천경관이나 생태계 등 특성을 회복(Rehabilitation)시키거나 복원(Restoration)하는 것이다. 현재 이 치수기능 확보를 위한 댐 보의 건설, 하천정비 및 골재채취 등 하천의 인공화가 계속되고 있으며, 이에 따른 하천 및 하도의 물리, 화학, 생물에 미치는 영향은 심각한 수준이다. 이러한 하천의 인위적 교란은 요인, 규모, 빈도 및 강도는 다르지만 하천생태 서식처의 물리적, 화학적 특성이 변형, 변질되어 하천생태계가 변화, 단절, 절멸되는 심각한 상태가 빈발하고 있다. 하천교란(River disturbance)은 요인에 따라 유량 및 유사량 변화, 하상변동, 하도준설, 인공호안, 생태통로 차단 등 하천의 물리적 환경 변화를 초래하고, 그에 따른 영향으로 생물종의 감소 및 단순화, 개체수 감소 등과 같이 하천 생태계가 변화하게 된다. 그러나 하천의 교란평가에 대한 연구가 미흡하고, 또한 표준화된 평가체제가 구축되어 있지 않을 뿐 만 아니라 하천환경의 복원에 대한 의식 보급도 부족한 것이 현실이다. 따라서, 본 연구에서는 하천의 교란정도를 파악하기 위한 하천교란평가기법 개발을 위한 전단계로서 일본의 하천수변 국세조사, 영국의 River Habitat Survey, 호주의 River Assessment System, 미국의 Stream Corridor Restoration 등에서 제시하는 하천모니터링 및 평가체제를 비교, 분석하였다. 외국사례 분석 결과를 토대로 하천교란 요인을 하천정비, 댐건설, 골재채취로 유형화하고 교란요인별 조사해야 할 물리적 인자로서 유량, 유사량, 하도 제원, 특징적 내용, 하도형상, 여울과 소, 점사주, 인공구조물, 제방 호안의 재료 및 특징 등으로 선정, 검토하였으며, 생태계 인자로서는 제방 마루의 토지이용 및 식생구조, 하도의 식생유형, 하도주변 토지이용, 하안(bank) 형상 및 구조, 수종 및 구조, 하도 및 하안 특징 및 구조 등으로 선정, 검토하였다. 이상의 하천교란과 관계되는 지표를 선정하여 물리적, 생태적 조사 및 교란평가기법(안)을 개발, 제시하였다.

  • PDF

A Study on the Setting Criteria and Management Area for the National Ecological Network (광역생태축 구축을 위한 기준 및 관리지역 설정 연구)

  • Jeon, Seong-Woo;Chun, Joung-Yoon;Seong, Hyeon-Chan;Song, Won-Kyong;Park, Ji-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.154-171
    • /
    • 2010
  • This study was performed to show criteria of a National Ecological Network (NEN) for South Korea and it was a part of a study of ecological network for broad areas on national land showed by Ministry of Environment of Korea. After 1970s, many european countries presented methods and criteria not on individual protected area but on networking among many habitats. The PEEN (Pan European Ecological Network) and NATURA 2000 are results of those. In South Korea, concepts and mapping metheods of ecological network was studied but those were not applied to the whole national land because the equality and local specialities were not reflected. So, in this study, we presented the criteria composed of forest, river, wildlife and coastal evaluation items in conservation ecology and showed the mapping method which can applied to the national land. After the evaluation on land area which composed of forest, river and wildlife axis. Core areas were $30,616km^2$, buffer zone were $21,870km^2$ and each accounted for 31% and 22% of the national land. Except for Taebaeck-Gangwon region, whole region's core areas were accounted for 20~30% of it and buffer zone were accounted for 20~25% of it, so these can be applied to the national land with equality and local specialities. Forest axis and river axis were clearly linear and connected, but the wildlife axis was dispersed in point form. Therefore, to apply the NEN, a detailed habitat map is important and the interconnected implementation of forest, river, wildlife, and coastal axis is required.

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.