• 제목/요약/키워드: River Network

검색결과 452건 처리시간 0.03초

기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석 (Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment)

  • 강지윤;김정민;김영도;강부식
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.

하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템 (Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility)

  • 함승재;강민수;정성우;유준혁
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.

Application of X-band polarimetric radar observation for flood forecasting in Japan

  • Kim, Sun-Min;Yorozu, Kazuaki;Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.15-15
    • /
    • 2011
  • The radar observation system in Japan is operated by two governmental groups: Japan Meteorological Agency (JMA) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan. The JMA radar observation network is comprised of 20 C-band radars (with a wavelength of 5.6 cm), which cover most of the Japan Islands and observe rainfall intensity and distribution. And the MLIT's radar observation system is composed of 26 C-band radars throughout Japan. The observed radar echo from each radar unit is first modified, and then sent to the National Bureau of Synthesis Process within the MLIT. Through several steps for homogenizing observation accuracy, including distance and elevation correction, synthesized rainfall intensity maps for the entire nation of Japan are generated every 5 minutes. The MLIT has recently launched a new radar observation network system designed for flash flood observation and forecasting in small river basins within urban areas. It is called the X-band multi parameter radar network, and is distinguished by its dual polarimetric wave pulses of short length (3cm). Attenuation problems resulting from the short wave length of radar echo are strengthened by polarimetric wavelengths and very dense radar networks. Currently, the network is established within four areas. Each area is observed using 3-4 X-band radars with very fine resolution in spatial (250 m) and temporal (1 minute intervals). This study provides a series of utilization procedures for the new input data into a real-time forecasting system. First of all, the accuracy of the X-band radar observation was determined by comparing its results with the rainfall intensities as observed by ground gauge stations. It was also compared with conventional C-band radar observation. The rainfall information from the new radar network was then provided to a distributed hydrologic model to simulate river discharges. The simulated river discharges were evaluated again using the observed river discharge to estimate the applicability of the new observation network in the context of operations regarding flood forecasting. It was able to determine that the newly equipped X-band polarimetric radar network shows somewhat improved observation accuracy compared to conventional C-band radar observation. However, it has a tendency to underestimate the rainfall, and the accuracy is not always superior to that of the C-band radar. The accuracy evaluation of the X-band radar observation in this study was conducted using only limited rainfall events, and more cases should be examined for developing a broader understanding of the general behavior of the X-band radar and for improving observation accuracy.

  • PDF

신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용 (Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System)

  • 윤강훈;서봉철;신현석
    • 한국수자원학회논문집
    • /
    • 제37권2호
    • /
    • pp.145-154
    • /
    • 2004
  • 본 연구는 비선형성이 강한 강우-유출의 특성을 고려하여 홍수시 하도의 유출을 예측하고 하천유역의 홍수예경보에 이용하기 위하여 신경망 시스템의 모형화 가능성을 검증하였다. 신경망을 이용한 실시간 하도홍수 예측모형(Neural River Discharge-Stage Forecasting Mudel; NRDFM)은 낙동강 유역의 왜관 및 진동 지점의 홍수량 예측에 적용하였다. NRDFM에 의한 하도홍수량의 왜관 및 진동 지점 예측결과를 실측치와 비교$\cdot$검토한 결과 제시한 세 가지 모형 중 NRDFM-II의 예측성능이 가장 우수하였으며, NRDFM-I 및 NRDFM-II도 충분한 예측가능성을 보여주었다. 따라서, 본 연구에서 제시한 모형은 실시간 홍수예경보로의 적용이 가능하며, 이를 통하여 효율적으로 홍수를 통제 및 관리할 수 있을 것이다.

하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발 (Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance)

  • 장봉주;정인택
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

신경망 모형을 이용한 홍수유출 예측시스템의 재발 (A Development of System for Flood Runoff Forecasting using Neural Network Model)

  • 안상진;전계원
    • 한국수자원학회논문집
    • /
    • 제37권9호
    • /
    • pp.771-780
    • /
    • 2004
  • 본 논문에서는 신경망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 홍수유출 예측을 위한 신경망 모형을 공주, 부여지점에 적용하였으며, 신경망 모형을 입력층, 은닉층, 출력층으로 구성하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발되었다. Web 기반 모형으로 개발된 신경망 모형을 서버에 탑재하고 금강수계의 본류와 주요 지점에 적용하여 Web 상에서 개발된 모형의 적용성을 검증하였다.

신경망과 퍼지 알고리즘을 이용한 하천 수질예측 (Water Quality Forecasting of River using Neural Network and Fuzzy Algorithm)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권2호
    • /
    • pp.55-62
    • /
    • 2005
  • This study applied the Neural Network and Fuzzy theory to show water-purity control and preventive measure in water quality forecasting of the future river. This study picked out NAJU and HAMPYUNG as the subject of investigation and used monthly the water quality and the outflow data of KWANGJU2, NAJU, YOUNGSANNPO and HAMPYUNG from 1995 to 1999 to forecast BOD, COD, T-N, T-P water density. The datum from 1995 to 1999 are used for study and that of 2000 are used for verification. To develop model of water quality forecasting, firstly, this research formed Neural Network model and divided Neural Network model into two case - the case of considering lag and not considering. And this study selected optimal Neural Network model through changing the number of hidden layer based on input layer(n) from n to 3n. Through forecasting result, the case without considering lag showed more precise simulated result. Accordingly, this study intended to compare, analyse that Fuzzy model using the method without considering lag with Neural Network model. As a result, this study found that the model without considering lag in Neural Network Network shows the most excellent outcome. Thus this study examined a forecasting accuracy, analyzed result and verified propriety through appling the method of water quality forecasting using Neural Network and Fuzzy Algorithms to the actual case.

Application of artificial neural networks to predict total dissolved solids in the river Zayanderud, Iran

  • Gholamreza, Asadollahfardi;Afshin, Meshkat-Dini;Shiva, Homayoun Aria;Nasrin, Roohani
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.333-340
    • /
    • 2016
  • An Artificial Neural Network including a Radial Basis Function (RBF) and a Time Delay Neural Network (TDNN) was used to predict total dissolved solid (TDS) in the river Zayanderud. Water quality parameters in the river for ten years, 2001-2010, were prepared from data monitored by the Isfahan Regional Water Authority. A factor analysis was applied to select the inputs of water quality parameters, which obtained total hardness, bicarbonate, chloride and calcium. Input data to the neural networks were pH, $Na^+$, $Mg^{2+}$, Carbonate ($CO{_3}^{-2}$), $HCO{_3}^{-1}$, $Cl^-$, $Ca^{2+}$ and Total hardness. For learning process 5-fold cross validation were applied. In the best situation, the TDNN contained 2 hidden layers of 15 neurons in each of the layers and the RBF had one hidden layer with 100 neurons. The Mean Squared Error and the Mean Bias Error for the TDNN during the training process were 0.0006 and 0.0603 and for the RBF neural network the mentioned errors were 0.0001 and 0.0006, respectively. In the RBF, the coefficient of determination ($R^2$) and the index of agreement (IA) between the observed data and predicted data were 0.997 and 0.999, respectively. In the TDNN, the $R^2$ and the IA between the actual and predicted data were 0.957 and 0.985, respectively. The results of sensitivity illustrated that $Ca^{2+}$ and $SO{_4}^{2-}$ parameters had the highest effect on the TDS prediction.

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.