동적해석에 대한 최근의 연구는 구조물의 자유도보다 적은 모우드 형상들을 사용하여 구조물을 해석하는 효과적인 방법을 찾는데 있다. Ritz알고리즘과 모우드가속도법은 모우드중첩법을 개선하고자 개발되었는데, Ritz알고리즘은 하중의 공간적 특성을 포함하지만, 계산과정에서 유용한 직교성을 잃는 경향이 있으며, 모우드가속도법은 만족할 만한 해를 얻기 위해 많은 수의 모우드 형상들을 고려해야 하는 단점이 있다. 또한 앞의 두 방법을 조합한 방법이 개발되었으나 너무 많은 계산과정과 시간을 필요로 한다. 이 연구의 목적은 Lanczos알고리즘을 이용하여 Ritz알고리즘의 효율성과 정확성을 보완하고 이를 프로그램화하여 검증하는데 있다. 본 연구의 결과로부터 Modified Ritz알고리즘을 이용한 동적해석방법이 합리적임이 증명되었다.
A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.
Journal of Advanced Marine Engineering and Technology
/
제29권8호
/
pp.877-882
/
2005
This paper discusses the lateral vibration of a bar which has its tip free. The uniform bar has a solution by summation of some simple exponential functions But if its shape is not uniform, its solution could be by Bessel's function, or mathematical solution could not be existed. Enen if the solution of Bessel's function exists. as Bessel function is a series function. we must got the solution by numerical method Hereby the author Proposes the ununiform beam solution of the matrix method by Ritz's method. and Proposes a new deflection shape function.
A Stepped beam with immovable ends under forced vibrations with large amplitude is investigated by using the finite element method and the Ritz vectors. Unlike the Eigen vectors, the Ritz vectors are generated by a simple recurrence relation. Moreover the Ritz vectors yield much faster convergence with respect to the number of vectors used than the use of Eigen vectors. The computer program is developed for nonlinear analysis using Ritz vectors instead of Eigen vectors and numerical examples are analysed for deflections and natural frequencies of stepped beam under various support conditions. Results show that the proposed method is valid and efficient.
The accurate dynamic analysis of structures is usually performed by a fine finite element discretization with very large number of degrees of freedom. Apart from modal analysis, one can reduce the number of final equations by assuming the deformed shape of the structure as a linear combination of independent Ritz vectors. The efficiency of this method relies heavily on the vectors selected. In this paper, a new set of Ritz vectors is proposed. It is primarily proved that these vectors are linearly independent. Subsequently, various two and three-dimensional examples are analyzed based on the proposed method. In each case, the results are compared with the ones obtained based on usual Ritz and modal analysis methods. It is finally concluded that the proposed method is very effective and efficient method for dynamic analysis of structures in frequency domain.
Leissa claimed in his article that the Rayleigh method is not the same as the Ritz method for determining natural frequencies and its corresponding mode shapes and contended that Rayleigh's name should not be attached to the method. The present article examines the methods in viewpoint of admissible functions and its minimization process, and of the historical developments. It concludes that Leissa's assertion is relevant, although Rayleigh did apply a conceptual theory systematized from the Lagrange method, and given 38 years earlier than Ritz's 'masterly exposition of theory'.
Safety-related cabinets and their electrical parts, such as relays and switches in nuclear power plants, should maintain continuous functioning, as well as structural safety according to the nuclear regulatory guidelines. Generally, an electrical part is qualified if its functioning is maintained without abnormality during excitement by motion compatible with the test response spectrum, which is larger than its in-cabinet response spectrum (ICRS). ICRS can be determined by shake-table test or dynamic analysis. Since existing cabinets in use can hardly be stopped and moved, dynamic analysis is preferred over shake-table test in determining ICRS. The simple method, suggested by the Electric Power Research Institute (EPRI) to determine ICRS, yields conservative or non-conservative results from time to time. In order to determine that the ICRS is better than EPRI method in a simple way, Ritz method considering global and local plate behaviors was suggested by Gupta et al. In this paper, the Ritz method is modified in order to consider the rocking and frame behaviors simultaneously, and it is applied to a simple numerical example for verification. ICRS is determined by Ritz method and compared with the results by finite element method (FEM). Based on this numerical example, recommendations for using Ritz method are suggested.
According to the Rayleigh-Ritz approximation method, a solution can be represented as a finite series consisting of space-dependent functions, which satisfy all the geometric boundary conditions of the problem and appropriate smoothness requirement in the interior of the domain. In this paper, an efficient formulation for solving structural dynamics systems in frequency domain is presented. A general procedure called Ritz modes (or vectors) generation algorithm is used to generate the admissible functions, i.e. Ritz modes, Then, the use of direct superposition of the Ritz modes is utilized to reduce the size of the problem in spatial dimension via geometric coordinates projection. For the reduced system, the frequency domain approach is applied. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.
Dvornik, Josip;Lazarevic, Damir;Uros, Mario;Novak, Marta Savor
Coupled systems mechanics
/
제7권6호
/
pp.755-774
/
2018
The Ritz method is known as very successful strategy for discretizing continuous problems, but it has never been used for solving systems of algebraic equations. The Iterated Ritz Method (IRM) is a novel iterative solver based on the discretized Ritz procedure applied at each iteration step. With an appropriate choice of coordinate vectors, the method may be efficient in linear, nonlinear and optimization problems. Additionally, some iterative methods can be explained as special cases of this approach, which helps to understand advantages and limitations of these methods and gives motivation for their improvement in sense of IRM. In this paper, some ideas for generation of efficient coordinate vectors are presented. The algorithm was developed and tested independently and then implemented into the open source program FEAP. Method has been successfully applied to displacement based (even ill-conditioned) models of structural engineering practice. With this original approach, a new iterative solution strategy has been opened.
본 논문에서는 다양한 음향 가진에 따른 음향 응답을 유한 요소법을 통하여 효과적으로 계산하기 위한 새로운 모델 축소법을 제안한다. 일반적인 유한 요소법을 통한 기계구조물의 응답을 구하기 위해서는 음향 방정식의 강성 및 행렬을 구한 뒤 이들의 조합을 통한 동적 강성행렬을 구한 뒤 역행렬을 구하여 다양한 주파수 응답을 구하게 된다. 현재 컴퓨터 하드웨어의 발전과 소프트 웨어의 발전에 의하여 더 많은 유한 요소를 사용할 수 있게 되었고 이로 인하여 더욱 정확하고 넓은 대역의 음향 응답을 구할 수 있게 되었다. 그러나, 아직까지도 아주 복잡한 구조물의 음향 응답을 구하기 위하여 유한 요소를 무한정으로 증가할 수 없는 경우가 많다. 이를 해결하기 위하여 일반적으로 모델 축소법(Model order reduction) 기법을 사용한다. 이 모델 축소법은 기본적으로 전체 행렬을 아주 작지만 효율적인 작은 행렬로 바꾸어 응답을 예측하는 기법으로 mode superposition method, ritz vector method, quasi-static ritz vector method등이 있다. 기존의 모델 축소법은 기본적으로 질량 및 강성행렬이 가진 주파수에 영향을 받지 않는 행렬이라 가정한다. 그렇기 때문에 경계조건이나 다공성 재료를 모델링할 경우 가진 주파수에 영향을 받는 강성행렬과 질량행렬이 만들어지게 되어 기존의 모델 축소법은 효과적이지 못하게 된다. 이런 문제점을 해결하기 위하여 이 논문에서는 Quasi-static ritz vector method의 기본적인 개념을 확장하여 여러 개의 중심 주파수(Center frequency)에서 기저를 계산하고 이를 동시에 이용하는 Multi-frequency quasi-static ritz vector method를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.