• Title/Summary/Keyword: Ripple injection

Search Result 26, Processing Time 0.022 seconds

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

A DC Ripple Voltage Suppression Scheme by Harmonic Injection in Three Phase Buck Diode Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 강압형 다이오드 정류기에서 고조파 주입에 의한 DC 리플전압 저감 기법)

  • 고종진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.305-308
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode rectifiers is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode rectifiers and guarantee zero-current -switching(ZCS) of the switch over the wide load range The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. IN addition control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations.

  • PDF

Analysis and Design for Ripple Generation Network Circuit in Constant-on-Time-Controlled Fly-Buck Converter (COT 제어 플라이벅 컨버터를 위한 전압 리플 보상회로의 분석 및 설계)

  • Cho, Younghoon;Jang, Paul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.106-117
    • /
    • 2022
  • Multiple output converters can be utilized when various output voltages are required in applications. Recently, one of the multiple output converters called fly-buck has been proposed, and has attracted attention due to the advantage that multiple output can be easily obtained with a simple structure. When constant on-time (COT) control is applied, the output ripple voltage must be treated carefully for control stability and voltage regulation characteristics in consideration of the inherent energy transfer characteristics of the fly-buck converter. This study analyzes the operation principle of the fly-buck converter with a ripple generation network and presents the design guideline for the improved output voltage regulation. Validity of the analysis and design guideline is verified using a 5 W prototype of the COT controlled fly-buck converter with a ripple generation network for telecommunication auxiliary power supply.

A 360Hz DC Ripple-Voltage Suppression Scheme in Three-Phase Soft-Switched Buck Converter (360Hz DC 리플-전압 감소기법을 사용한 3-Phase Soft-Switched Buck Converter)

  • Choi, Ju-Yeop;Ko, Jong-Jin;Song, Joong-Ho;Choy, Ick;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.813-820
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode converter is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode converter and guarantee zero-current-switching(ZCS) of the switch over the wide load range. The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. In addition, control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations and experiments.

  • PDF

Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection (입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정)

  • 이강주;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a novel on-line dc capacitance estimation method for the three-phase PWM converter is proposed. At no load, input current at a low frequency is injected, which causes dc voltage ripple. With the at voltage and current ripple components of the dc side, the capacitance can be calculated. Experimental result shows that the estimation error is less than 2%.

A Study of Precision High Voltage Generator for Ion Injection (이온주입용 정밀고압 발생장치 연구)

  • 유동욱;정창용;백주원;조정구;조기연;김학성;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.158-161
    • /
    • 1998
  • A precision high voltage generator for ion injection is implemented on HFZVS-PSCI (High Frequency Zero-Voltage-Switching Phase-Shift-Controlled Inverter). Some practical aspects of implementing precision high voltage generator with HFZVS-PSCI, such as a HFHV transformer, multiflier, and precision CR divider are discussed. The results show that the generator under the Phase-Shift-Controller has a fast dynamic response, low ripple voltage, and high accuracy.

  • PDF

Study of harmonic reduction method in PWM Inverter of washing machine BLDC motor that use single current sensor (단일 전류 감지기를 이용한 세탁기 BLDC 모터의 PWM Inverter 에서 고조파 저감방법에 관한 연구)

  • Kim, Hwa-Sung;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.142-144
    • /
    • 2007
  • This paper proposes problem improvement in existing method about three-phase current reconstruction method and present minimum voltage injection method and Smooth voltage injection method in single current sensor for washing machine motor drive. So, presented wash noise improvement method through ripple reduction in inverter. The simulation and experimental results are given to show the effectiveness of the proposed method for reconstructing the phase currents and reducing the noises.

  • PDF

DC-link Ripple Reduction of Cascaded NPC/H-bridge Converter using Third Harmonic Injection (Cascaded NPC/H-bridge 컨버터의 DC링크 리플 저감을 위한 3차 고조파 주입 기법)

  • Park, Woo-Ho;Kang, Jin-Wook;Hyun, Seung-Wook;Hong, Seok-Jin;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.218-219
    • /
    • 2016
  • This paper present Phase Shifted with carrier based on Sinusoidal PWM(SPWM) by using Cascaded NPC/H-birdge converter. The proposed Phase Shifted PWM method is adding third harmonic injection in switching signal. The advantage of the proposed method is reducing the voltage and capacity of the capacitor. This paper compare general Phase Shifted method with proposed Phase Shifted method that added the third harmonic injection. Each PWM method is tested without considering the switching loss by using PSIM 9.1.4 simulation.

  • PDF

A New Inverter Topology for High Voltage and High Power Applications (고전압 대용량을 위한 새로운 인버터 토폴로지)

  • 김태훈;최세완;박기원;이왕하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • In this paper, a new three-phase voltage-source inverter topology for high voltage and high Power applications is proposed to improve the quality of output voltage waveform. A chain converter which is used as an auxiliary circuit generates a ripple voltage and injects it to the conventional 12-step inverter. Thus, the injection of the ripple voltage results in 36-step operation with a link and 60-step operation with two links. The proposed inverter is compared to the conventional multilevel inverter in the viewpoint of ratings of phase- shifting transformers, switching devices and capacitors employed. The proposed scheme is simple to control capacitor voltages compared to the conventional schems and is cost effective for high voltage and high power application over several tens of MVA. The proposed approach is validated through simulation, and the experimental results are provided from a 2KVA laboratory prototype.