• Title/Summary/Keyword: Ripple current

Search Result 901, Processing Time 0.028 seconds

A Fabrication of the Tilted Waveguide Structure SLD and Its Output Light Power Characteristics (경사 도파로형 고휘도 레이저 다이오드(SLD)의 제작 및 광출력 특성)

  • Choi Young-Kyu;Kim Girae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.55-60
    • /
    • 2006
  • In order to suppress lasing oscillation and obtain high light power, We have proposed a novel SLD which is formed with a straight and tilted waveguide. The window region is used to suppress lasing oscillation and reduce the facet reflectivity. High power and low reflectivity is obtained by the straight and tilted waveguide. Based on the theoretical analysis, we have fabricated the SLD with the waveguide of 500 $\mu$m length and window region of 50 $\mu$m by LPE equipment. Through the measurements of optical characteristics, the output light power of 3 mW was obtained at the 150 mA CW injection current and 25$^{circ}C$. We have confirmed that the proposed SLD has a 0.8 dB spectrum ripple lower than 1 dB which is sufficiently low reflectivity for preventing lasing.

Optimized PWM Switching Strategy for an Induction Motor Voltage Control

  • Lee, Hae-Hyung;Hwang, Seuk-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.527-533
    • /
    • 1998
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses, and has been therefor recognizedas the perfered PWM method, especially in the case of digital implementation. Three-phase invertor voltage control by space vector modulation consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The prefered switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by suing the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.

  • PDF

Finite Element Analysis of a BLDC Motor with Static Rotor Eccentricity (회전자의 정적 편심을 고려한 BLDC 전동기의 유한요소해석)

  • Park, Seung-Chan;Lee, Jin-Woo;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.611-613
    • /
    • 2000
  • Rotor eccentricity exists extensively in BLDC motors because of manufacturing imprecision or bearing defects. In this paper, magnetic fields of a BLDC motor with static rotor eccentricity are analyzed by the time- stepping finite element method. Torque ripple, cogging torque, winding current, counter-em! and unbalanced magnetic force characteristics are obtained. These results are compared with those of a non-eccentric BLDC motor.

  • PDF

Current Control of SRM using Neural Network (신경회로망을 이용한 SRM의 전류추종 제어)

  • Ahn, Sung-Ho;Oh, Seok-Gyu;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.257-259
    • /
    • 1998
  • The Switched Reluctance Motor (SRM) has good properties to the adjustable speed control. But, high torque ripple and noise decrease this merit and make unstable state. Also, because of the saturation in the magnetic circuit, it is difficult to predict the inductance profile. If the inductance pronto is known, it's possible to make flat-top torque by applying some control strategy. This paper suggests method to develope flat-top torque using a Artificial Neural Network(ANN) method that can calculate a nonlinear inductance profile.

  • PDF

A study on ZVS Half-Bridge converter Using IM(Integrated Magnetics) (IM(Integrated Magnetics)방식을 적용한 ZVS 하프브리지 컨버터에 관한 연구)

  • Lee, Dae-Hyuk;Kim, Yong;Bae, Jin-Yong;Kim, Pill-Soo;Cho, Gyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.164-167
    • /
    • 2005
  • This paper present ZVS Half-Bridge converter Using IM(Integrated Magnetics). In converter system, magnetic components are important devices used for energy storage, energy transfer, galvanic isolation and filtering. The purposes of IM(Integrated Magnetics) are to reduce the number of magnetic components and voltage/current ripple. This topology is use of three magnetics components thus increasing the cost and size of the system. A prototype featuring 300V input, 15V output, 400kHz switching frequency, and 150W output power.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage (불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • 김종겸;박영진;정종호;이은웅
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.372-379
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Rotating machines operating on an unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on steady states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Analysis of Phase Error Effects Due to Grid Frequency Variation of SRF-PLL Based on APF

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This paper proposes a compensation algorithm for reducing a specific ripple component on synchronous reference frame phase locked loop (SRF-PLL) in grid-tied single-phase inverters. In general, SRF-PLL, which is based on all-pass filter to generate virtual voltage, is widely used to estimate the grid phase angle in a single-phase system. In reality, the estimated grid phase angle might be distorted because the phase difference between actual and virtual voltages is not 90 degrees. That is, the phase error is caused by the difference between cut-off frequency of all-pass filter and grid frequency under grid frequency variation. Therefore, the effects on phase angle and output current attributed to the phase error are mathematically analyzed in this paper. In addition, the proportional resonant (PR) controller is adapted to reduce the effects of phase error. The validity of the proposed algorithm is verified through several simulations and experiments.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

Selective Phase Control Method of Parallel DC-DC Converter to Reduce the Ripple Current (병렬 DC-DC 컨버터의 전류 맥동 저감을 위한 선택적 위상 제어 방법)

  • Baek, Seung-Woo;Kim, Hag-Wone;Chae, Su-yong
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.26-27
    • /
    • 2017
  • 본 논문은 병렬로 운전되는 컨버터의 출력 전류 맥동을 감소시키기 위한 선택적 위상 지연 구동 방법을 제안한다. 병렬로 운전되는 컨버터는 부하의 크기 및 운전하는 컨버터의 개수에 따라 그 효율이 달라지므로, 기동되는 컨버터의 개수를 가변하여 운전하는 것이 효율적이다. 또한 전류의 맥동을 저감하기 위해서 일정한 위상 차이를 가지도록 제어하는 인터리브드 운전 기법이 널리 사용되고 있다. 따라서 병렬 운전되는 컨버터의 출력전류 맥동을 저감시키기 위해, 운전되는 컨버터의 개수에 따라 위상 간격을 조정해야 할 필요성이 있다. 본 논문에서는 구동되는 컨버터의 개수에 따라 위상 간격을 제어하여 출력전류의 맥동을 저감하는 기법을 제안한며, 실험을 통해 제안된 알고리즘을 검증한다.

  • PDF

Torque Ripple Reduction Driver of Single Pulse High Power Factor (토크리플 저감을 고려한 단상 SRM 고역률 구동)

  • Kim, Bong-Chul;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.979-981
    • /
    • 2003
  • A novel single-stage power factor corrected (PFC) drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current. The proposed PFC SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as do source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit will be discussed in depth through the experimental results.

  • PDF