• Title/Summary/Keyword: Rigid method

Search Result 1,786, Processing Time 0.037 seconds

Relationship between atrial pressures and the interventricular pressure in the moving actuator type total artificial heart (심실간 공간 압력을 이용한 이동작동기형 완전이식 인공심장에서의 좌, 우심방압 추정)

  • Jo, Y.H.;Choi, W.W.;Park, S.K.;Choi, J.S.;Lee, J.J.;Om, K.S.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.88-90
    • /
    • 1996
  • The right and left atrial pressures are important parameters in automatic control of a total artificial heart (TAH) within normal physiological ranges. Our TAH is composed of a moving actuator, right and left ventricles and the interventricular space enclosed by a semi-rigid housing. During operation of the TAH, the jnterventpicular space's volume is changed dynamically by the difference between the ejection volume of one ventricle and the inflow volume of the other. Therefore, the changes in pressure of the interventricular space is related to both atrial pressures. We measured the interventricular pressure (IVP) waveform using a pressure sensor and attempted to indirectly estimate the changes of atrial pressures. This method has an advantage that the sensor does not contact the blood directly. Furthermore, the IVP waveforms have its zero baseline in each pump cycle, thus the pressure measurements are free from the transducer drift problems by measuring the peak pressure from these baseline values. From the In vitro experiments, we found that the IVP waveform contained several useful parameters such as negative peak, dP/dT on the initial break, the area enclosed by the profile in each stroke, which are associated with atrial pressures and the filling conditions of the ventricles. The measured atrial pressures were linearly related to the negative peak of the interventricular pressure.

  • PDF

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods (거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동)

  • Lee, Su-Hyung;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.411-417
    • /
    • 2013
  • The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Preparation and Physical Properties of High-Solid Coatings by Acrylic Resins and Hexamethylene Diisocyanate-Biuret (아크릴수지와 헥사메틸렌 디이소시아네이트-뷰렛에 의한 고 고형분 도료의 제조 및 도막물성 연구)

  • 유혁재;정동진;박홍수;김성길;임완빈
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • Acrylic resins (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid EHBCs) containing 80% of solid were synthesized. Then, high-solid coatings (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid/hexamethylene diisocyanate-biuret : EHBCNs) were prepared by curing of the acrylic resin with curing agent hexamethylene diisocyanate-biuret at room temperature. The cure time of prepared coatings EHBCN-4 (EHBC-4 : $T_{g}$ = $0^{\circ}C$) and EHBCN-7 (EHBC-7 : $T_{g}$ = 3$0^{\circ}C$), measured by rigid-body pendulum method, was recorded 6.2 hours and 4.5 hours, respectively. Dynamic viscoelastic experiment revealed the glass transition temperature of EHBCN-4 and EHBCN-7 to be $14^{\circ}C$ and $39^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various properties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

3D Reconstruction of a Single Clothing Image and Its Application to Image-based Virtual Try-On (의상 이미지의 3차원 의상 복원 방법과 가상착용 응용)

  • Ahn, Heejune;Minar, Matiur Rahman
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.1-11
    • /
    • 2020
  • Image-based virtual try-on (VTON) is becoming popular for online apparel shopping, mainly because of not requiring 3D information for try-on clothes and target humans. However, existing 2D algorithms, even when utilizing advanced non-rigid deformation algorithms, cannot handle large spatial transformations for complex target human poses. In this study, we propose a 3D clothing reconstruction method using a 3D human body model. The resulting 3D models of try-on clothes can be more easily deformed when applied to rest posed standard human models. Then, the poses and shapes of 3D clothing models can be transferred to the target human models estimated from 2D images. Finally, the deformed clothing models can be rendered and blended with target human representations. Experimental results with the VITON dataset used in the previous works show that the shapes of reconstructed clothing are significantly more natural, compared to the 2D image-based deformation results when human poses and shapes are estimated accurately.

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.

Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis

  • Park, Choon-Soo;Yu, Hyung-Seog;Cha, Jung-Yul;Mo, Sung-Seo;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.393-403
    • /
    • 2019
  • Objective: Sliding mechanics using orthodontic miniscrews is widely used to stabilize the anchorage during extraction space closure. However, previous studies have reported that both posterior segment displacement and anterior segment displacement are possible, depending on the mechanical properties of the archwire. The present study aimed to investigate the effect of archwire stiffness and friction change on the displacement pattern of the maxillary posterior segment during anterior segment retraction with orthodontic miniscrews in sliding mechanics. Methods: A three-dimensional finite element model was constructed. The retraction point was set at the archwire level between the lateral incisor and canine, and the orthodontic miniscrew was located at a height of 8 mm from the archwire between the second premolar and first molar. Archwire stiffness was simulated with rectangular stainless steel wires and a rigid body was used as a control. Various friction levels were set for the surface contact model. Displacement patterns for the posterior and anterior segments were compared between the conditions. Results: Both the anterior and posterior segments exhibited backward rotation, regardless of archwire stiffness or friction. Among the conditions tested in this study, the least undesirable rotation was found with low archwire stiffness and low friction. Conclusions: Posterior segment displacement may be unavoidable but reducing the stiffness and friction of the main archwire may minimize unwanted rotations during extraction space closure.

Hierarchical Agent Synthesis Framework using Discrete Event System Specification and System Entity Structure (이산사건시스템 명세와 체계 요소 구조를 활용한 계층적 에이전트 합성 프레임워크)

  • Choi, Changbeom
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • An agent-based simulation is a popular simulation tool to solve various problems, such as stock market, population prediction, disease prediction, and development of a traffic system. As the agents are developed and researched in different application fields, the agent has a rigid structure and may not acceptable in different domains. As a result, it is a challenging problem to define a structure for an agent structure to reflect the researcher's simulation objective. This research proposes an extendable form for an agent and its modeling environment. In order to propose a standard structure, this study adopts system entity structure and discrete event system specification formalism. Also, this research introduces the SESManager which supports the proposed specification method. The proposed environment can hierarchically define the agent structure and synthesize the agent so that it can perform the agent simulation according to the user's simulation purpose.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.