• Title/Summary/Keyword: Rigid dynamics

Search Result 295, Processing Time 0.033 seconds

Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn (RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술)

  • Choi, Juhwan;Choi, Jin Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • The analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of the computational dynamics. This technique has been developed and improved in RecurDyn solver. This paper reviews the formulation which is applied in the RecurDyn solver. Basically, in order to solve the multi-flexible-body dynamics problem, an incremental finite element formulation using a corotational procedure is used. In particular, in order to solve the rigid and flexible bodies together, a constraint equation between a rigid body and a flexible body is applied, in which a virtual body and a flexible body joint are introduced.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study (고선택성 폴리이미드 소재의 합성 및 분자동력학 연구를 통한 기체투과도의 비교)

  • Lee, Jung Moo;Kim, Deuk Ju;Jeong, Moon Ki;Lee, Myung Gun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.162-170
    • /
    • 2015
  • In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.

Coupled Dynamic Analyses of Underwater Tracked Vehicle and Long Flexible Pipe (유연관-해저주행차량 연성 동적거동 해석)

  • Hong, Sup;Kim, Hyung-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • We developed a computational method on coupled dynamics of tracked vehicle on seafloor and long flexible pipe. The tracked vehicle is modeled as rigid-body vehicle, and the linked flexible pipe is discretized according to a lumped-parameter model. The equations of motion of the rigid-body vehicle on the soft seafloor are combined with the governing equations of flexible pipe dynamics. Four Euler parameters method is used to express the orientations of the vehicle and the flexible pipe. In order to solve the nonlinear coupled dynamics of vehicle and flexible pipe an incremental-iterative formulation is implemented. For the time-domain integration $Newmark-\beta$ method is adopted. The total Jacobean matrix has been derived based on the incremental-iterative formulation. The interactions between the dynamics of flexible pipe and the mobility of the tracked vehicle on soft seafloor are investigated through numerical simulations in time domain.

Experimental and Numerical Study on an Air-Stabilized Flexible Disk Rotating Close to a Rigid Rotating Disk (회전원판 근처에서 회전하는 유연디스크에 대한 실험 및 수치해석)

  • Gad, Abdelrasoul M.M.;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2009
  • The present work is an experimental and analytical study on a flexible disk rotating close to a rigid rotating disk in open air. In the analytical study, the air flow in the gap between the flexible disk and the rigid disk is modeled using Navier-Stokes and continuity equations while the flexible disk is modeled using the linear plate theory. The flow equations are discretized using the cell centered finite volume method (FVM) and solved numerically with semi-implicit pressure-linked equations (SIMPLE algorithm). The spatial terms in the disk equation are discretized using the finite difference method (FDM) and the time integration is performed using fourth-order Runge-Kutta method. An experimental test-rig is designed to investigate the dynamics of the flexible disk when rotating close to a co-rotating, a counter-rotating and a fixed rigid disk, which works as a stabilizer. The effects of rotational speed, initial gap height and inlet-hole radius on the flexible disk displacement and its vibration amplitude are investigated experimentally for the different types of stabilizer. Finally, the analytical and experimental results are compared.

  • PDF

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

VSC with three-segment nonlinear sliding mode for robot manipulator (로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF

Mechatronic Analysis for Feeding a Structure of a Machine Tool Using Multi-body Dynamics (다물체 동역학을 활용한 공작기계 구조물 이송을 위한 메카트로닉 해석)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.691-696
    • /
    • 2012
  • In this study, a rigid multi-body dynamic model has been developed for mechatronic analysis to evaluate dynamic behavior of a machine tool. The development environment was the commercialized analysis tool, ADAMS, for rigid multi-body dynamic analysis. A simplified servo control logic was implemented in the tool using its functions in order to negate any external tool of control definition. The advantage of the internal implementation includes convenience of the analysis process by saving time and efforts. Application of this development to a machine tool helps to evaluate its dynamic behavior against feeding its component, to calculate the motor torque, and to optimize parameters of the control logic.

Computer Simulation for Dynamic Analysis of Rigid Body Suspension System for Waching Machine (세탁기용 강제 현가시스템의 동특성 해석을 위한 전산 시뮬레이션)

  • 정경렬;이종범;임무생;윤종만
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • In this study, we identify the structural dynamic characteristics of the rigid body suspension system of waching machine containing rotating system, and consider the methods for the reduction of noise and vibration due to the structural problems. The structural dynamic characteristics of the suspension system have been studied by the computer simulation, in which the commercial software package, "DYMES(Dynamics of Mechanical System)" is used. The behaviour of the supporter by the rotating system has been parametrically studied by computer simulation, and the force and torque which are transferred to the fixed body through the suspension bar also has been calculated. The possibility to decide the position and the stability of the rigid body suspension system for waching machine is demonstrated based on various simulation results.n results.

  • PDF

Dynamic Analysis of Interconnected Flexible Beams Having Large Rigid Body Rotations (대규모 강체 회전을 포함한 상호 연결된 유연한 보의 동역학적 해석)

  • Lee, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.108-114
    • /
    • 1997
  • A simple and efficient method is presented for the dynamics of interconnected flexible beams having large rigid body rotations. A simple mass matrix is obtained by interpolating the displacements in the global inertia frame, and the elastic force is also simply computed by using linear finite element technique with the moving frame attached to the beam. For the beams connected by revolute joints, kinematic constraints and relative rotations between the beans are not required and the equations of motions are time integrated by a simple ODE technique. Numerical simulations are conducted to demonstrate the accuracy and efficiency of the present technique.

  • PDF