DOI QR코드

DOI QR Code

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study

고선택성 폴리이미드 소재의 합성 및 분자동력학 연구를 통한 기체투과도의 비교

  • Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Myung Gun (Aekyung Petrochemical Co., LTD.) ;
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 이정무 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 김득주 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 정문기 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 이명건 (애경유화 중앙연구소) ;
  • 박치훈 (경남과학기술대학교 에너지공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2015.04.16
  • Accepted : 2015.04.22
  • Published : 2015.04.30

Abstract

In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.

본 연구에서는 다양한 아민기를 가지는 폴리이미드 소재 및 분리막을 제조하여 그들의 구조의 변화에 따른 기체 투과도를 측정하였으며 동력학(Molecular dynamics; MD) 기술을 이용하여 해당 기체의 시간의 변화에 따른 위치와 속도를 계산하여, 기체분자의 동적 특성을 분석하는데 활용하였다. 투과도 측정결과 합성된 고분자 소재의 경우 고분자 내의 free volume을 증가시키는 치환기를 도입시켰을 경우 기체투과도가 증가되었으나 rigid한 구조가 도입된 폴리이미드는 투과도가 감소되는 경향을 확인하였다. 또한 분자동력학 시뮬레이션을 이용하여 기체투과거동 변화를 분석한 결과 실제 기체투과도 측정결과와 유사한 결과를 나타냄을 확인할 수 있었다.

Keywords

References

  1. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  2. T.-S. Chung, L. Y. Jiang, and Y. Li S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  3. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  4. P. Luis B. Bruggen, "The role of membranes in post combustion $CO_2$ capture", Greenh. Gases., 3, 318 (2013). https://doi.org/10.1002/ghg.1365
  5. Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara, and T. Tamari, "Relation of gas permeability with structure of aromatic polyimides I", J. Membr. Sci., 111, 169 (1996). https://doi.org/10.1016/0376-7388(95)00172-7
  6. B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000). https://doi.org/10.1016/S0376-7388(99)00292-6
  7. J. Ahn, W.-J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  8. J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, "The effects of crosslinking chemistry on $CO_2$ plasticization of polyimide gas separation membranes", Ind. Eng. Chem. Res., 41, 6139 (2002). https://doi.org/10.1021/ie0204639
  9. D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membr. J., 21, 307 (2011).
  10. D. J. Kim and S. Y. Nam, "Research and Development Trends of Polyimide Based Material for Gas Separation", Membr. J., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  11. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: a review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  12. C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010). https://doi.org/10.1016/j.memsci.2010.01.005
  13. J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325
  14. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  15. H. R. Lee, J. M. Lee, and S. Y. Nam, "Gas transport properties of crosslinked polyimide membranes induced by aliphatic diamines with different chain length", Membr. J., 23, 450 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.450
  16. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9, 293 (2000). https://doi.org/10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1
  17. M. Heuchel, D. Fritsch, P. M. Budd, N. B. McKeown, and D. Hofmann, "Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1)", J. Membr. Sci., 318, 84 (2008). https://doi.org/10.1016/j.memsci.2008.02.038
  18. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  19. C. H. Park, C. H. Lee, J. Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B., 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  20. E. Tocci, D. Hofmann, D. Paul, N. Russo, and E. Drioli, "A molecular simulation study on gas diffusion in a dense poly (ether ether ketone) membrane", Polymer, 42, 521 (2001). https://doi.org/10.1016/S0032-3861(00)00102-6
  21. C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  22. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z.E. Qi, "Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999). https://doi.org/10.1016/S0032-3861(98)00675-2
  23. J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005). https://doi.org/10.1021/ma0473521
  24. S. G. Charati, and S. A. Stern, "Diffusion of gases in silicone polymers: molecular dynamics simulations", Macromolecules, 31, 5529 (1998). https://doi.org/10.1021/ma980387e