Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.162

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study  

Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Lee, Myung Gun (Aekyung Petrochemical Co., LTD.)
Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Membrane Journal / v.25, no.2, 2015 , pp. 162-170 More about this Journal
Abstract
In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.
Keywords
molecular dynamics (MD); polyimide; gas separation membrane; diffusivity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007).   DOI
2 T.-S. Chung, L. Y. Jiang, and Y. Li S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007).   DOI
3 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
4 P. Luis B. Bruggen, "The role of membranes in post combustion $CO_2$ capture", Greenh. Gases., 3, 318 (2013).   DOI
5 Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara, and T. Tamari, "Relation of gas permeability with structure of aromatic polyimides I", J. Membr. Sci., 111, 169 (1996).   DOI
6 B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000).   DOI
7 J. Ahn, W.-J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008).   DOI
8 J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, "The effects of crosslinking chemistry on $CO_2$ plasticization of polyimide gas separation membranes", Ind. Eng. Chem. Res., 41, 6139 (2002).   DOI
9 D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membr. J., 21, 307 (2011).
10 D. J. Kim and S. Y. Nam, "Research and Development Trends of Polyimide Based Material for Gas Separation", Membr. J., 23, 393 (2013).   DOI
11 P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: a review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009).   DOI
12 C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010).   DOI
13 J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014).   DOI
14 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
15 C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014).   DOI
16 H. R. Lee, J. M. Lee, and S. Y. Nam, "Gas transport properties of crosslinked polyimide membranes induced by aliphatic diamines with different chain length", Membr. J., 23, 450 (2013).   DOI
17 D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, "Detailed atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9, 293 (2000).   DOI
18 M. Heuchel, D. Fritsch, P. M. Budd, N. B. McKeown, and D. Hofmann, "Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1)", J. Membr. Sci., 318, 84 (2008).   DOI
19 C. H. Park, C. H. Lee, J. Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B., 114, 12036 (2010).   DOI
20 E. Tocci, D. Hofmann, D. Paul, N. Russo, and E. Drioli, "A molecular simulation study on gas diffusion in a dense poly (ether ether ketone) membrane", Polymer, 42, 521 (2001).   DOI
21 C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006).   DOI
22 Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z.E. Qi, "Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999).   DOI
23 S. G. Charati, and S. A. Stern, "Diffusion of gases in silicone polymers: molecular dynamics simulations", Macromolecules, 31, 5529 (1998).   DOI
24 J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005).   DOI