• 제목/요약/키워드: Rigid Body Dynamic Analysis

검색결과 213건 처리시간 0.025초

유연 구조물의 동적해석시 고전적 선형모델링의 신뢰성 (Reliability of Classical Linear Modeling in Dynamic Analysis of Flexible Structures)

  • 유홍희
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1657-1664
    • /
    • 1995
  • For dynamic analysis of flexible structures, classical linear modeling has been widely used due to its several good aspects. However, it was found that the modeling often lost its accuracy. So, it is important to know the valid range of the modeling before it is used. more complicated modelings are needed to obtain reliable results only outside the valid range of the classical linear modeling. In this study, some rigid body motions of flexible structures which lead to the failure of the classical linear modeling are investigated. Hybrid deformation variable modeling, which is proved to be accurate in previous studies, is used to figure out the valid range of the classical linear modeling through numerical examples.

Nonlinear dynamic FE analysis of structures consisting of rigid and deformable parts -Part II - Computer implementation and test examples

  • Rojek, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.327-343
    • /
    • 1994
  • This is the second part of the paper (Rojek and Kleiber 1993) devoted to nonlinear dynamic analysis of structures consisting of rigid and deformable parts. The first part contains a theoretical formulation of nonlinear equations of motion for the coupled system as well as a solution algorithm. The second part presents the computer implementation of the equations derived in the first part with a short review of the capabilities of the computer program used and the library of finite elements. Details of material nonlinearity treatment are also given. The paper is illustrated by discussing a practical problem of a safety cab analysis for an agricultural tractor.

On the accuracy of estimation of rigid body inertia properties from modal testing results

  • Ashory, M.R.;Malekjafarian, A.;Harandi, P.
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.53-65
    • /
    • 2010
  • The rigid body inertia properties of a structure including the mass, the center of gravity location, the mass moments and principal axes of inertia are required for structural dynamic analysis, modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia properties of complex structures. Several experimental approaches have been developed to determine the rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work two experimental methods are used to estimate the rigid body inertia properties of a frame. The first approach consists of using the amount of mass as input to estimate the other inertia properties of frame. In the second approach, the property of orthogonality of modes is used to derive the inertia properties of a frame. The accuracy of the estimated parameters is evaluated through the comparison of the experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is presented.

강체모드분리와 급수전개를 통한 고유치 문제에서의 준해석적 설계 민감도 개선에 관한 연구(II) -동적 문제 - (A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion in Eigenvalue Problem(II) - Eigenvalue Problem -)

  • 김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.593-600
    • /
    • 2003
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Analytic Method(SAM) fur computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements. the SAM shows severe inaccuracy. In this study, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover. the error of the SAM caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally the present study shows that the refined SAM including the iterative method improves the results of sensitivity analysis in dynamic problems.

임프란트설계를 위한 저작시 상.하악골치아 사이의 충격력 계산 (Calculation of Impact Force between Teeth of Upper and Lower Jaw-Bones while Masticating for Dental Implant System Design)

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 2000
  • In this paper the impact force which occurs on each tooth of jaw-bones while masticating is calculated through the rigid body dynamic analysis. This analysis is done by ADAMS. The impact force calculated in this paper is required for the structural stress analysis of implant system which is needed for the implant system design. The analysis results show that the impact time decreases as the impact force increases, the largest impact force occurs on the front tooth and the impact force is almost normal to the tooth surface together with slight tangential force.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제8권2호
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

동력학 모델을 이용한 인체 동작 제어 (Human Motion Control Using Dynamic Model)

  • 김창회;오병주;김승호
    • 대한인간공학회지
    • /
    • 제18권3호
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석 (Design and Analysis of a Linear Feeder using Computer Simulation)

  • 이규호;김성현;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론 (Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory)

  • 권영주
    • 한국전산구조공학회논문집
    • /
    • 제26권5호
    • /
    • pp.359-371
    • /
    • 2013
  • 본 논문은 두 편으로 구성된 사고로 지면에 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석 논문 중 첫 번째 논문으로 기구동역학 해석에 대한 일반 이론연구를 수행하였다. 이를 통하여 고준위폐기물 처분용기의 구조 안전성 설계에 요구되는 처분용기 처분 시 사고로 추락낙하 하여 지면과 충돌하는 경우 처분용기에 가해지는 충격력을 이론적으로 구하고자 하였다. 이론 연구의 주된 내용은 다물체 동역학의 운동방정식에 관한 것이며 이를 토대로 다물체간 충돌 시 발생하는 충격력을 구하는 문제를 이론적으로 다루었다. 이렇게 이론적으로 구한 충격력을 처분장에서 처분용기 운송 시 운반차량에서 사고로 추락낙하 하여 지면과 충돌하는 처분용기에 발생하는 충격력을 구하는 문제에의 적용을 검토하였다.