J. KSIAM Vol.8, No.2, 75-86, 2004

Dynamic Analysis of a Chain of Rigid Rods

Hazem Ali Attia

Abstract

In this study, a recursive algorithm for generating the equations of motion of a chain of
rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a
dynamically equivalent constrained system of particles. The concepts of linear and
angular momentums are used to generate the rigid body equations of motion without
either introducing any rotational coordinates or the corresponding transformation
matrices. For open-chain, the equations of motion are generated recursively along the
serial chains. For closed-chain, the system is transformed to open-chain by cutting
suitable kinematic joints with the addition of cut-joints kinematic constraints. An
exmaple of a closed-chain of rigid rods is chosen to demonstrate the generality and
simplicity of the proposed method.

1. Introduction

Many formulations have been used to carry out the dynamic analysis of planar
mechanisms. Some formulations (Orlandea et al. 1977 and Nikravesh 1988) use a large set
of dependent coordinates. The location of each rigid body in the system is described in
terms of a set of absolute coordinates; translational and rotational coordinates. The
constraint equations are imposed to represent the kinematic joints that connect the rigid
bodies. This formulation has the advantage that the constraint equations are easily
introduced, however, it has the disadvantage of a large number of coordinates defined.
Other formulations (Sheth et al. 1972) describe the configuration of the system in terms of
relative coordinates. The location of each body is defined with respect to the adjacent body
by means of an angle or a distance depending on the type of the kinematic pair joining the
two bodies. Although this formulation yields the constraints as a minimal set of algebraic
equations, it has the disadvantage that it does not directly determine the positions of the
bodies and points of interest.

Other methods for generating the equations of motion use a two-step transformation.
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They group the advantages of the simplicity, generality and efficiency. One method (Kim et
al. 1986) uses initially the absolute coordinate formulation. Then, the equations of motion
are expressed in terms of the relative joint variables. Another method (Garcia et al. 1986,
Attia 1993, Nikravesh et al. 1994, Attia 1999, and Attia et al. 2001) uses initially a
dynamically equivalent constrained system of particles to replace the rigid bodies. The
equations of motion are derived using Newton's second law and the Lagrange multiplier
technique which results in a large number of differential-algebraic equations. The
simplicity and the absence of any rotational coordinates from the final form of the equations
of motion are considered the main advantages of this formulation. Therefore, the equations
of motion that were expressed in matrix form in terms of the Cartesian coordinates of the
particles are transformed to a reduced set in terms of the relative joint variables.

In the present paper, a recursive algorithm for generating the equations of motion of
an open or closed-chain of rigid rods is presented. The method rests upon the idea of
replacing the rigid body by its dynamically equivalent constrained system of particies
discussed in (Garcia et al. 1986 and Attia 1993) with essential modifications and
improvements. The concepts of the linear and angular momentums of the rigid body are
used to formulate the rigid body dynamical equations. However, they are expressed in
terms of the rectangular Cartesian coordinates of the equivalent system of particles. This
groups the advantages of the automatic elimination of the unknown internal constraint
forces as in Newton-Euler formulation while expresses the general motion of the rigid body
in terms of a set of Cartesian coordinates without introducing any rotational coordinates or
the corresponding transformation matrices. This process results in a reduced system of
differential-algebraic equations and also eliminates the necessity of distributing the external
forces and moments over the particles. For open-chain, the equations of motion are
generated recursively along the serial chains instead of the matrix formulation derived in
Attia 1993. Geometric constraints that fix the distances between the particles are introduced
while some kinematic constraints due to common types of joints and the associated
constraint forces are automatically eliminated by properly selecting the locations of the
particles. For a closed-chain, the system is transformed to open-chain by cutting suitable
kinematic joints and introducing the cut-joint kinematic constraints. The dynamic analysis
of a closed-chain of rigid rods is carried out to demonstrate the generality and simplicity of
the suggested method.

2. The Dynamic Model
2.1 Construction of the Equivalent System of Particles
A system of three particles is chosen to replace the rigid rod in spatial motion as
shown in Fig. 1. Particles 1 and 3 are located at both ends of the rod while particle 2 is

located at the middle of the rod. The rigid rod and its dynamically equivalent system of
particles should have the same mass, the same position of the centre of mass and the same
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moment of inertia about an axis perpendicular to the rod. For a rigid rod of length I and
mass m, these conditions read as

m=my +my +ms,mly, =(my/2+m3), 1, =(my [ 4+mp),
and can be solved to determine the unknown masses of the particles in the form,

4 2 m
my =l~2—(mllc ~1,),m; =l—2‘(10 —Ellc),ml =m—my —m3,

where [, is the location of the centre of mass of the rod and /,, is the moment of inertia

about an axis perpendicular to the rod and passing through its left end. If the rigid rod is
connected to other rods in an open-chain by spherical joints, then particles 1 and 3 can be
conveniently located at the centers of these joints which reduces the total number of

particles replacing the whole system and leads to the automatic elimination of the constraint
forces associated with the joints.

2.2 Equations of Motion of a Single Rigid Rod in Plane Motion

Consider a rigid rod which is acted upon by external forces and force couples. The
rigid rod is replaced by an equivalent system of three particles as shown in Fig. 1. The
distances between the three particles are invariant as a result of the internal constraint forces
existing between them. The vector sum of these unknown internal forces and also the vector
sum of their moments about any point each vanishes by the law of action and reaction.
Then, the linear momentum equation for the whole system of particles yields,

R=>m )

where R is the vector sum of the external forces acting on the rigid rod and # is the

acceleration vector of particle i with respect to the global coordinate frame. Also, the

angular momentum equation for the whole system of particles with respect to particle 1
takes the form

3 3
Gy = ) riy Ami; = Y Fiy Amyi; = moFy 1Py +m3F3 3 2)
i=2 1:2

where G| represents the vector sum of the moments of the external forces and force couples

acting on the rod with respect to the location of particle 1 and 7; is the relative position
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vector from particle 1 to i. It should be mentioned that, in the spatial case, since a rod has
no moment of inertia about its axis, the three components of the vector G) are not

independent but only two equations of the vector relation can be used. The constraints
between the three particles are given as

V3T1r3,1 -2 =0 (3a)

rz—(r1+r3)/2=0 (3b)

Differentiating Eqs. (3) with respect to time leads to the velocity constraints
i =0 (42)
rh—(+r3)/2=0 (4b)
and further differentiation yields the acceleration constraints
(s —#) =~ 731 (52)

= +r)/2=0 (5b)

The equations of motion (1), (2) and (5) represent a linear system of 6 scalar
algebraic equations for the planar motion and 9 scalar algebraic equations for the spatial

case, that can be solved to determine the unknown acceleration vectors #;,i =1,...,3, of the
particles at any instant of time. Substituting Eq. (5b) into Egs. (1) and (2) results in

R= (ml + ﬂ)rl + (m3 + _77_12);;3 (6)
2 2
my o .. ~ my ..
Gl = 72 1’2,17'1 + (m3 r3’1 + —2; }"2’1 )}"3 (7)

Equations (6), (7) and (5a) represent, for the planar case, four differential-algebraic
equations of motion for the planar rod expressed in the four Cartesian coordinates of the
endpoints 1 and 3. ‘
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For the spatial case, in order to determine the independent components of the vector
equation (7), we first rotate the x axis to coincide with the rod. This can be achieved by
rotating the global coordinate frame about the z axis by an angle © and then about the

resulting y axis by an angle -¢. The unit vectors along the resulting y and z axes are
represented as

i =[~sin,c0s0,0]” i = [~ cossin p,sin Bsin g, cos @]

wheretan @ = y3 /x3, tan @ = z3 /\/x32 + y32 ,6=n/2 for x3 =0, ¢=n/2 for
x3 = y3 =0and 5] =(x3,¥3,23) are the Cartesian coordinates of particle 3 with respect

to the global frame centered at point 1.

By projecting the vectors in Eq. (7) along # and # respectively, we obtain, two
independent moment equations in the form,

1T
—_ my _ .. ~ my . —
GlTu = L72 }’2’11”1 + (m3r3’1 +—2ll"2,1 \}}’3 u 8]
_m m id
GlTﬁ = 7272’17.”'1 +[m373’1 +—2—2—72’1ji".3 u 2)

Equations (6), (8) and (5a) represent, for the spatial case, six differential-algebraic
equations of motion for the spatial rod expressed in the six Cartesian coordinates of the
endpoints 1 and 3.

2.3 Equations of Motion of a Serial Chain of Rigid Rods

Figure 2 shows a serial chain of N rigid rods with the equivalent system of (2N+1)
particles where connected particles are unified from both bodies. For the last rod "N" in the
chain, the equations of motion are derived in a similar way as Eqgs. (6) and (7) (for the planar

case) or (8) (for the spatial case) of a single rigid rod. The angular momentum equation
takes, for the planar case, the form

m m
— 2N o~ ey ~ 2N o~ .
GN,zN—l = By 2natanva +(m2N+lr2N+l,2N~1 + ) Fanana Jerﬂ 9)

2

and for the spatial case, the form
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T
m m
_ "IN - IN - . _
GTy aN-1¥N = —, "2N2N-12N- 1*[’”2N+1’2N+1 N1+ r2N,2N~1]’2N+1} Uy
(10a)
T
. N -~ "HON .
GTy N1y = [ 5 2NN~ 1"2N- 1+[”’2N+1’2N+1 2N-1F "N 2N- I}ZNH} Uy
(10b)

where GT) ,,_, is the vector sum of the moments of the external forces and force couples

acting on rod N with respect to the location of particle 2N-1. The distance constraint is
given as

T .. . .T .
PN +1,2N-1F2N+1 =aN-1) = AN 412N -1F3 N 412N -1 (11)

Addition of one more rod in the chain leads to the inclusion of an angular
momentum equation that takes into consideration the contributions of all the ascending rods
in the chain together with one distance constraint between the particles belonging to this rod.
These two equations are appended to the equations of motion derived for the leading rods in
the chain. For rod j, the appended equations of motion take, for the planar case, the form

N N
myj ~ myj ~
ZGi,Zj—l =Z { ) 72217~ 1+(m21+1r21+12] 1+—— > Ripj- 1]’21+1} (12)
~ =

and for the spatial case, the form
T

T
N _ N m2l - m2 .. _
Z Gz 2j-1| %5 = ,-Ej T, 2i2j)- P21 | M 21 YT ) Pi2j-1 [2ir1 [ | #j

(13a)
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T

N TA N mle My . .
ZGIZ]-—] i = ,-Ej T 12021701 F| M2t P2in 21 YT 2021 2 | 4

(13b)
with the constraint equation,

T . T . .T .
P2j-12j+172 -1 F72j+12j-172j+1 = 772j+1,2j-173 j 41,2 -1 (14)

If rod "j" is the floating base rod in the chain then, two linear momentum equations,
similar to Eq. (6), are required to solve for the unknown acceleration components of particle
1. These linear momentum equations equate the sum of the external forces acting on all the
rods in the chain to the time rate of change of the linear momentums of all the equivalent
particles that replace the chain and take the form

my; .
ZR Z{(mb 1+ 5 j”zz 1+ 22 r21+1}+m2N+1r2N+1 (15)

=)

In general, for a serial chain of N rods, an equivalent system of (2N+1) particles is
constructed. By eliminating the coordinates of N particles, we are left with N+1 particles
and consequently, 2N+2 unknown acceleration components. To solve for these unknowns,
N angular momentum equations can be generated recursively along the serial chain together
with N distance constraints between the pair of particles located on each rod. Finally, two
linear momentum equations can be used to solve for the unknown acceleration components
of particle 1 or for the unknown reaction forces if there is a fixation at point 1. If the chain
is closed at its final end, a cut-joint at this end can be used to produce an open chain with the
introduction of unknown reaction forces. The cut-joint constraint equations substitute for
these unknown reactions.

If rods "j" and "j-1" in a serial chain are connected by a prismatic joint, then
particles 2j-3, 2]-2 and 2j-1 are located at body "j-1" while particles 2j, 2j+1, and 2j+2 are
assigned to body "j". Particles 2j-3 and 2j-1 on body "j-1" and particles 2j and 2j-2 on body
"j" are arbitrarily located along the axis of the prismatic joint. Then the equations of motion
are generated recursively along the serial chain as discussed above with the introduction of
two kinematical constraints associated with the prismatic joint in the form:
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(rj—3 —nj-)A(ryj—1j+2) =0, (162)
(raj-3 =r2j-D) A (raj —r2;-1) =0, (16b)

Similar treatment can be used in dealing with all other kinds of lower or higher pair
kinematical joints.

In the case of an open-chain or a closed-chain, it can be transformed to a system of
serial chains by cutting suitable joints. Cut-joint constraints and the associated constraint
reaction forces are introduced. For the multi-branch system shown in Fig. 3, the system is
divided into 4 chains by cutting the connection joints at points 1, 2, 3 and 4. Equivalent
particles are conveniently chosen to locate at the positions of the connection joints and in
terms of their Cartesian coordinates the cut-joint constraint equations are easily formulated.
These kinematical constraints substitute for the unknown constraint reaction forces that
appear explicitly in the linear and angular momentum equations. It is also shown in Fig. 3
that some rods are connected with the others in many points. In such a case, though the
number of particles that dynamically replace the rigid rod is three which can be used to
define two joints, more particles may be added to describe additional joints.

It should be noted that in this formulation, the kinematical constraints due to some
common types of kinematical joints (e.g. revolute or spherical joints) can be automatically
eliminated by properly locating the equivalent particles. The remaining kinematical
constraints along with the geometric constraints are, in general, either linear or quadratic in
the Cartesian coordinates of the particles. Therefore, the coefficients of their Jacobian
matrix are constants or linear in the rectangular Cartesian coordinates. Where as in the
formulation based on the relative coordinates, the constraint equations are derived based on
loop closure equations which have the disadvantage that they do not directly determine the
positions of the links and points of interest which makes the establishment of the dynamic
problem more difficult. Also, the resulting constraint equations are highly nonlinear and
contain complex circular functions. The absence of these circular functions in the point
coordinate formulation leads to faster convergence and better accuracy. Furthermore,
preprocessing the mechanism by the topological graph theory is not necessary as it would be
the case with loop constraints.

Also, in comparison with the absolute coordinates formulation, the manual work of
the local axes attachment and local coordinates evaluation as well as the use of the rotational
variables and the rotation matrices in the absolute coordinate formulation are not required in
the point coordinate formulation. This leads to fully computerized analysis and accounts for
a reduction in the computational time and memory storage. In addition to that, the
constraint equations take much simpler forms as compared with the absolute coordinates.
Furthermore, the use of absolute coordinates may cause numerical problems if differences
of large values of the absolute coordinates are used, e.g. for the calculation of spring or
damper forces or constraint residuals.

The elimination of the rotational coordinates, in the presented formulation, leads to
possible savings in computation time when this procedure is compared against the absolute
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or relative coordinate formulation. It has been determined that numerical computations
associated with rotational transformation matrices and their corresponding coordinate
transformations between reference frames is time consuming and, therefore, if these
computations are avoided more efficient codes may be developed. The elimination of
rotational coordinates can also be found very beneficial in design sensitivity analysis of
multibody systems. In most procedures for design sensitivity analysis, leading to an optimal
design process, the derivatives of certain functions with respect to a set of design parameters
are required. Analytical evaluation of these derivatives are much simpler if the rotational
coordinates are not present and if we only deal with translational coordinates.

Some practical applications of multibody dynamics require one or more bodies in
the system to be described as deformable in order to obtain a more realistic dynamic
response (Nikravesh et al. 1994). Deformable bodies are normally modeled by the finite
element technique. Assume that the deformable body is connected to a rigid body described
by a set of particles. Then, one or more particles of the rigid body can coincide with one or
more nodes of the deformable body in order to describe the kinematical joint between the
two bodies. This is a much simpler process that when the rigid body is described by a set of
translational and rotational coordinates. In general, the point coordinates have additional
advantages over the other systems of coordinates since they are the most suitable
coordinates for the graphics routines and the animation programs.

2. Dynamic Analysis of The "Straight-Line-Generator' Mechanism

The straight-line-generator mechanism shown in Fig. 4a is chosen as an example of
a closed-chain. It is a one degree of freedom mechanism which has three independent
closed loops. The Cartesian coordinates (cm) of the end-points of the different links of the
mechanism as given as: "O" (0,0), "A" (-2,0), "B" (2,4), "C" (6,0), "D" (2,-4), and "E" (2,0).
The mechanism is divided into three independent branches by cutting suitable joints and
introducing cut-joint constraints. As shown in Fig. 4b, the first branch consists of 5 bodies
OA, AB, BC, CD, and DE connected from ground to ground. This branch is produced by
cutting joints at points B and D. The second and third branches each consists of only one
body BE and AD respectively. Each rigid body is replaced by an equivalent system of 3
particles. Two particles are conveniently located at the centers of the joints connecting it to
the adjacent bodies in the branch, while the Cartesian coordinates of the third particle are
expressed in terms of the coordinates of the other two particles with the aid of the two
distance constraints. Locating the particles belonging to adjacent bodies together at the
connection joints reduces the total number of particles replacing the whole system and leads
to an automatic elimination of the kinematical constraints at these joints. Additional
particles are added at the joints connecting separated branches due to cut-joints. An overall
equivalent system of 10 particles is constructed. The equations of motion are generated
recursively along each serial branch as discussed in section 4 while the unknown constraint

forces resulting from cutting the joints are introduced. The cut-joint constraints are
expressed as,
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r=t=0r-r=0r-r=0r-¢=0r-c=0

where ¢, and ¢, are two constant known vectors. A linear system of 28 algebraic equations
can be solved at every time step to determine 18 unknown acceleration components of
particles 2,...,9 as well as 10 unknown reaction forces at the cut-joints. The motion is started
from the rest position under the action of gravity forces where link OA is in the horizontal
position shown in Fig. 4a. Figure 5 presents the straight line trajectory of particle 4 in the
plane of motion and indicates the oscillations in the vertical coordinate y4 due to the action

of the constraint forces. The results of the simulation are tested and compared with DAP-
2D program which is based on the absolute coordinates (Nikravesh 1988). The comparison
shows a complete agreement between the two simulations.

Conclusions

In the present work, the concepts of linear and angular momentums are used to
derive the equations of motion of a chain of rigid rods. However, they are expressed in
terms of the rectangular Cartesian coordinates of a dynamically equivalent constrained
system of particles. This groups the advantages of the automatic elimination of the
unknown internal constraint forces and describing the general motion of the rigid body in
terms of a set of Cartesian coordinates without either introducing any rotational coordinates
or distributing the external forces and force couples over the particles. The method results
in a reduced system of differential-algebraic equations with the absence of the inconvenient
rotational coordinates. The methodology is extended to a system of rigid rods with all
common types of kinematic joints, revolute or prismatic.
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Fig. 4a. The Peaucellier mechanism indicating links and joint types
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Fig. 4b. The three serial chains replacing the peaucellier mechanism and
indicating the equivalent particles
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Fig. 5. the trajectory of particle 4
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