• 제목/요약/키워드: Ribosomal proteins

검색결과 91건 처리시간 0.024초

Identification of Differentially Expressed Genes in Human Small Cell Lung Carcinoma Using Subtractive Hybridization

  • Ahn Seung-Ju;Choi Jae-Kyoung;Joo Young Mi;Lee Min-A;Choi Pyung-Rak;Lee Yeong-Mi;Kim Myong-Shin;Kim So-Young;Jeon Eun-Hee;Min Byung-In;Kim Chong-Rak
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.195-202
    • /
    • 2004
  • Lung cancer is a leading cause of cancer death worldwide; however, despite major advances in cancer treatment during the past two decades, the prognostic outcome of lung cancer patients has improved only minimally. This is largely due to the inadequacy of the traditional screening approach of diagnosis in lung cancer, which detects only well­established overt cancers and fails to identify precursor lesions in premalignant conditions of the bronchial tree. In recent years this situation has fundamentally changed with the identification of molecular abnormalities characteristic of premalignant changes; these concern tumour suppressor genes, loss of heterozygosity at crucial sites and activation of oncogenes. Basic knowledge at the molecular level has extremely important clinical implications with regard to early diagnosis, risk assessment and prevention, and therapeutic targets. In this study we used a 'cap-finder' subtractive hybridization method, 'long distance' polymerase chain reaction (PCR), streptavidin magnetic beads mediated subtraction, and spin column chromatography to detect differential expression genes of human small cell lung carcinoma. We have now isolated ninety two genes that expressed differentially in the human small cell lung carcinoma cells and analyzed of 12 clones with sequencing, nine cDNAs include tapasin (NGS-17) mRNA, BC200 alpha scRNA, chromosome 12q24 PAC RPCI3-462E2, protein phosphatase 1 (PPPICA), translocation protein 1 (TLOC1), ribosomal protein S24 (RPS24) mRNA, protein phosphatase (PPEF2), cathepsin Z, MDM2 gene and three novel genes. They may be oncogenesis­related proteins.

  • PDF

Biosynthesis of 3-Hydroxy-5-Methyl-O-Methyltyrosine in the Saframycin/Safracin Biosynthetic Pathway

  • Fu, Cheng-Yu;Tang, Man-Cheng;Peng, Chao;Li, Lei;He, Yan-Ling;Liu, Wen;Tang, Gong-Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.439-446
    • /
    • 2009
  • The biosynthesis study of antibiotics saframycin (SFM) in Streptomyces lavendulae and safracin (SAC) in Pseudomonas fluorescens demonstrated that 3-hydroxy-S-methyl-O-methyltyrosine (3hSmOmTyr), a nonproteinogenic amino acid, is the precursor of the tetrahydroisoquinoline molecular core. In the biosynthetic gene cluster of SAC/SFM, sacD/sfmD encodes a protein with high homology to each other but no sequence similarity to other known enzymes; sacF/sfmM2 and sacG/sfmM3 encode methyltransferases for C-methylation and O-methylation; and sacE/sfinF encodes a small protein with significant sequence similarity to the MbtH-like proteins, which are frequently found in the biosynthetic pathways of non ribosomal peptide antibiotics and siderophores. To address their function, the biosynthetic cassette of 3h5mOmTyr was heterologously expressed in S. coelicolor and P. putida, and an in-frame deletion and complementation in trans were carried out. The results revealed that (i) SfmD catalyzes the hydroxylation of aromatic rings; (ii) sacD/sacF/sacG in the SAC gene cluster and sfmD/sfmM2/sfmM3 in the SFM cluster are sufficient for the biosynthesis of 3h5mOmTyr; and (iii) the mbtH-like gene is not required for the biosynthesis of the 3h5mOmTyr precursor.

적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조 (Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis)

  • 정해영;윤성호;이홍금;오태광;김지현
    • 한국미생물·생명공학회지
    • /
    • 제34권1호
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Genome Information of Maribacter dokdonensis DSW-8 and Comparative Analysis with Other Maribacter Genomes

  • Kwak, Min-Jung;Lee, Jidam;Kwon, Soon-Kyeong;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.591-597
    • /
    • 2017
  • Maribacter dokdonensis DSW-8 was isolated from the seawater off Dokdo in Korea. To investigate the genomic features of this marine bacterium, we sequenced its genome and analyzed the genomic features. After de novo assembly and gene prediction, 16 contigs totaling 4,434,543 bp (35.95% G+C content) in size were generated and 3,835 protein-coding sequences, 36 transfer RNAs, and 6 ribosomal RNAs were detected. In the genome of DSW-8, genes encoding the proteins associated with gliding motility, molybdenum cofactor biosynthesis, and utilization of several kinds of carbohydrates were identified. To analyze the genomic relationships among Maribacter species, we compared publically available Maribacter genomes, including that of M. dokdonensis DSW-8. A phylogenomic tree based on 1,772 genes conserved among the eight Maribacter strains showed that Maribacter speices isolated from seawater are distinguishable from species originating from algal blooms. Comparison of the gene contents using COG and subsystem databases demonstrated that the relative abundance of genes involved in carbohydrate metabolism are higher in seawater-originating strains than those of algal blooms. These results indicate that the genomic information of Maribacter species reflects the characteristics of their habitats and provides useful information for carbon utilization of marine flavobacteria.

Real Time Reverse Transcriptase-PCR to Detect Viable Enterobacteriaceae in Milk

  • Choi, Suk-Ho;Lee, Seung-Bae
    • 한국축산식품학회지
    • /
    • 제31권6호
    • /
    • pp.851-857
    • /
    • 2011
  • This study was conducted to develop a real time reverse transcriptase-PCR (RT-PCR) method for the detection of viable Enterobacteriaceae in milk using primers based on the genes of ribosomal proteins S11 and S13 and to determine effects of heating and subsequent treatments on the threshold cycle (Ct) of the real time RT-PCR. Total RNA was isolated from 17 strains of bacteria including 11 strains of Enterobacteriaceae suspended in milk using a modified Tri reagent method. SYBR Green Master Mix was added to the RNA and the mixture was subjected to the real time RT-PCR. The Cts of eleven type strains of the Enterobacteriaceae in milk ($10^7$ cells) in the real time RT-PCR ranged from 21.5 to 24.6. However, the Cts of Pseudomonas fluorescens, Acinetobacter calcoaceticus, and three gram-positive bacteria were more than 40. The real time RT-PCR detected as low as $10^3$ cells in agarose gel electrophoresis. The Cts increased from 22.0 to 34.2 when milk samples contaminated with Escherichia coli ($10^7$ cells/mL) were heated at $65^{\circ}C$ for 30 min. In addition, subsequent incubation at $37^{\circ}C$ for 6 and 24 h increased the Cts further up to 36.2 and 37.2, respectively. Addition of RNase A to the bacterial suspension obtained from the heated milk and subsequent incubation at $37^{\circ}C$ for 1 h increased the Cts to more than 40. The results of this study suggests that pretreatment of bacterial cells heated in milk with RNase A before RNA extraction might enhance the ability to differentiate between viable and dead bacteria using real time RT-PCR.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • 남기연;정동훈;최재원;이윤성;이평우
    • 대한바이러스학회지
    • /
    • 제29권4호
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Analysis of partial cDNA sequence from Theileria sergenti

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deog;Lee, Joo-mook
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.797-805
    • /
    • 1999
  • T sergenti cDNA library were constructed to get a more broad information about the structural, functional or antigenic properties of the proteins, and analyzes for their partial cDNA sequences and expression sequences tags(ESTg). The mRNA were purified from T sergenti isolates to identify the information of antigen gene, then first and second strand cDNA was synthesized. EcoR I adaptor ligation and Xho I enzyme restriction were used to the synthesized cDNA, and ligated into a Uni-ZAP XR vector. T sergenti cDNA library was constructed with packaging and amplification in vitro. Antibody screening was performed with constructed T sergenti cDNA library using antisera against T sergenti. Among those clones, eight phagemids were rescued from the recombinant in vivo excision with f1 helper phage. Using the analysis of endonuclease restriction and PCR, the recombinant cDNA were proved having a 0.5-3.0kb of inserts. The eight of partial cDNA clones' sequences were obtained and examined for their homology using BLASTN and BLASTX. The eight of sequenced clones were classified into three groups according to the basis of database searches. A total 3,045bp of partial cDNA sequence were determined from six clones. The putatively identified clones contain a cytochrome c gene, a heat shock protein gene, a cyclophilin gene, and a ribosomal protein gene. The unidentified clones have a homology to ATP-binding protein(mtrA) gene of S argillaceus, DNA-binding protein(DBP) gene of Pseudorabies virus 85kDa merozoite protein gene of B bovis, mRNA spm1 protein of T annulata and glycine-rich RNA-binding protein mRNA of O sativa etc.

  • PDF

마루자주새우[Crangon hakodatei (Rathbun, 1902)]의 전장 미토콘드리아 유전체에 대한 분석 연구 (Complete Mitochondrial Genome of Crangon hakodatei (Rathbun, 1902) (Crustacea: Decapoda: Crangonidae))

  • 김경률;김현우
    • 한국수산과학회지
    • /
    • 제49권6호
    • /
    • pp.867-874
    • /
    • 2016
  • Although shrimps belonging to family Crangonidae are known to be genetically divergent and ecologically important among the various benthos, any of their mitochondrial genome has not been reported yet. We here determined the complete mitochondrial genome sequence of Crangon hakodatei (Rathbun, 1902), which was collected from East China Sea ($124^{\circ}E$ and $34.5^{\circ}N$). Total mitochondrial genome length of C. hakodatei was 16,060 bp, in which 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs and a putative control region were encoded. Secondary structure prediction analysis showed that twenty tRNA genes exhibit the conserved structure but two genes, $tRNA^{Cys}$ and $tRNA^{Ser}$ (AGN), lack T and D arm, respectively. Based on the sequence similarity of the COI region from the currently reported five species belonging to genus Crangonidae, C. hakodatei was most closely related to Crangon crangon. Phylogenetic analysis of full COXI genes belonging to infraorder Caridea showed that only crangonid shrimps were clustered together with those of Dendrobranchiata. Gene order were well conserved from Penaeoidea to Caridea but $tRNA^{Pro}$ and $tRNA^{Thr}$ in Palaemonid shrimp were flipped each other by the recombination. Further study about mitochondrial genome sequences of shrimps belonging to Crangonidae should be made to know better about their evolutional relationships with other those in infraorder Caridea.

북극 지의류 Cladonia종에서 분리한 Caballeronia sordidicola균주 PAMC 26577의 유전체 서열 분석 (Genome sequence of Caballeronia sordidicola strain PAMC 26577 isolated from Cladonia sp., an Arctic lichen species)

  • 양정안;홍순규;오현명
    • 미생물학회지
    • /
    • 제53권2호
    • /
    • pp.141-143
    • /
    • 2017
  • Caballeronia sordidicola 균주 PAMC 26577은 다산 기지 근처에서 채집된 지의류인 Cladonia 종에서 분리되었다. Illumina 방식으로 분석한 균주 PAMC 26577의 초안 유전체 서열은 182개의 콘티그로 이루어졌으며, N50값은 159,226 염기쌍 길이에 해당하였다. 초안 유전체로 총 8,334,211 염기쌍을 확인하였으며, 59.4% G+C 함량을 나타냈다. 유전체는 단백질을 코드하지 않는 8개의 rRNA 유전자와 51개의 tRNA 유전자를 포함하였다. 8,065개의 단백질 유전자는 기본 대사 과정뿐 아니라 부탄올/부티르산 생합성, 폴리하이드록시부티르산 대사, serine cycle methylotrophy 및 글라이코겐 대사 유전자들을 가지고 있었다. 2백개 이상의 막 전달 단백질은, 인산화 전달 시스템과 TRAP 전달시스템이 부재하였다. PAMC 26577은 CRISPR 관련 서열 및 단백질이 없었으며, 파아지 유전자의 감염흔적으로 인한 11개의 파아지 관련 유전자를 찾아낼 수 있었다.

IGF결합 단백질-4(IGFBP-4)와 이질 핵 리보핵산단백질 L (hnRNP L)의 상호결합의 식별 (Identification of the Interaction between Insulin-like Growth Factor Binding Protein-4 (IGFBP-4) and Heterogeneous Nuclear Ribonucleoprotein L (hnRNP L))

  • 최미영
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1311-1316
    • /
    • 2013
  • hnRNP L은 pre-mRNA에 결합하는 단백질들 중에서 핵심이 되는 단백질이다. hnRNP L은 양이 아주 많은 핵 단백질로서 핵과 세포질을 왕복하는 특성을 지니고 있다. 이 단백질은 염색질 변형(chromatin modification), pre-mRNA 스플라이싱, 인트론이 없는 유전자들에서 유래한 mRNA들의 세포질로의 반출(export), IRES-매개성 번역, mRNA의 안정성 조절, 정자형성과정 등, 세포 내의 여러 가지 과정에 관여하고 있는 것으로 알려져 있다. 이 논문에서는 hnRNP L과 결합하는 세포 내 단백질을 찾아내기 위하여 사람의 간세포 cDNA library를 사용하여 이스트 two-hybrid 탐색 실험을 수행하였다. 그 결과 사람의 간세포에서 IGFBP-4가 hnRNP L과 상호결합하는 새로운 파트너라는 것을 발견하였다. 본 연구를 통하여 hnRNP L이 이스트 two-hybrid 시스템에서 IGFBP-4와 특이적으로 상호 결합한다는 것을 처음으로 발견하였다. 본 연구에서는 또한 이스트 two-hybrid 시스템에서 hnRNP L이 IGFBP-4와 상호결합한다는 점을 in vitro pull-down 실험을 통하여 재확인하였다.