Browse > Article
http://dx.doi.org/10.4014/jmb.0808.484

Biosynthesis of 3-Hydroxy-5-Methyl-O-Methyltyrosine in the Saframycin/Safracin Biosynthetic Pathway  

Fu, Cheng-Yu (School of Life Science and Technology, Xi'an Jiaotong University)
Tang, Man-Cheng (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
Peng, Chao (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
Li, Lei (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
He, Yan-Ling (School of Life Science and Technology, Xi'an Jiaotong University)
Liu, Wen (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
Tang, Gong-Li (State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.5, 2009 , pp. 439-446 More about this Journal
Abstract
The biosynthesis study of antibiotics saframycin (SFM) in Streptomyces lavendulae and safracin (SAC) in Pseudomonas fluorescens demonstrated that 3-hydroxy-S-methyl-O-methyltyrosine (3hSmOmTyr), a nonproteinogenic amino acid, is the precursor of the tetrahydroisoquinoline molecular core. In the biosynthetic gene cluster of SAC/SFM, sacD/sfmD encodes a protein with high homology to each other but no sequence similarity to other known enzymes; sacF/sfmM2 and sacG/sfmM3 encode methyltransferases for C-methylation and O-methylation; and sacE/sfinF encodes a small protein with significant sequence similarity to the MbtH-like proteins, which are frequently found in the biosynthetic pathways of non ribosomal peptide antibiotics and siderophores. To address their function, the biosynthetic cassette of 3h5mOmTyr was heterologously expressed in S. coelicolor and P. putida, and an in-frame deletion and complementation in trans were carried out. The results revealed that (i) SfmD catalyzes the hydroxylation of aromatic rings; (ii) sacD/sacF/sacG in the SAC gene cluster and sfmD/sfmM2/sfmM3 in the SFM cluster are sufficient for the biosynthesis of 3h5mOmTyr; and (iii) the mbtH-like gene is not required for the biosynthesis of the 3h5mOmTyr precursor.
Keywords
3-Hydroxy-5-methyl-O-methyltyrosine; biosynthesis; saframycin; safracin; MbtH-like protein; heterologous expression;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Carter, R. A., P. S. Worsley, G. Sawers, G. L. Charllis, M. J. Dillworth, K. C. Carson, et al. 2002. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: Their expression in other genera requires ECF sigma factor RpoI. Mol. Microbiol. 44: 1153-1166   DOI   ScienceOn
2 Gehring, A. M., I. Mori, and C. T. Walsh. 1998. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37: 2648-2659   DOI   ScienceOn
3 Hubbard, B. K. and C. T. Walsh. 2003. Vancomycin assembly: Nature's way. Angew. Chem. Int. Ed. 42: 730-765   DOI   ScienceOn
4 Konz, D. and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39-R48   DOI   ScienceOn
5 Lautru, S., D. Oves-Costales, J.-L. Pernodet, and G. L. Challis. 2007. MbtH-like protein-mediated cross-talk between nonribosomal peptide antibiotic and siderophore biosynthetic pathways in Streptomyces coelicolor M145. Microbiology 153: 1405-1412   DOI   ScienceOn
6 de Lorenzo, V., L. Eltis, B. Kessler, and K. N. Timmis. 1993. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17-24   DOI   ScienceOn
7 Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. P. Martins dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808   DOI   ScienceOn
8 Schwarzer, D., R. Finking, and M. A. Marahiel. 2003. Nonribosomal peptides: From gene to products. Nat. Prod. Rep. 20: 275-287   DOI   ScienceOn
9 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY
10 Zhang, W., B. D. Ames, S.-C. Tsai, and Y. Tang. 2006. Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl. Environ. Microbiol. 72: 2573-2580   DOI   ScienceOn
11 Crosa, J. H. and C. T. Walsh. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66: 223-249   DOI   ScienceOn
12 Scott, J. D. and R. M. Williams. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 102: 1669-1730   DOI   ScienceOn
13 Selbitschka, W., S. Niemann, and A. Pühler. 1993. Construction of gene replacement vectors from Gram- bacteria using a genetically modified sacRB gene as a positive selection marker. Appl. Microbiol. Biotechnol. 38: 615-618   DOI
14 Herrero, M., De V. Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567   DOI   PUBMED
15 Carter, N. J. and S. J. Keam. 2007. Trabectedin: A review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 67: 2257-2276   DOI   ScienceOn
16 Lin, S., S. G. Van Lanen, and B. Shen. 2008. Characterization of the two-component, FAD-dependent monooxygenase SgcC that requires carrier protein-tethered substrates for the biosynthesis of the enediyne antitumor antibiotic C-1027. J. Am. Chem. Soc. 130: 6616-6623   DOI   ScienceOn
17 Mikami, Y., K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi, S. Iwasaki, and S. Okuda. 1985. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J. Biol. Chem. 260: 344-348
18 Drake, E. J., J. Cao, J. Qu, M. B. Shah, R. M. Straubinger, and A. M. Gulick. 2007. The 1.8 $\AA$ crystal structure of PA2412, an MbtH-like protein from pyoverdine of Pseudomonas aeruginosa. J. Biol. Chem. 282: 20425-20434   DOI   ScienceOn
19 Quadri, L. E., J. Sello, T. A. Keating, P. H. Weinreb, and C. T. Walsh. 1998. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence conferring siderophore mycobactin. Chem. Biol. 5: 631-645   DOI   ScienceOn
20 Stegmann, E., C. Rausch, S. Stockert, D. Burkert, and W. Wohlleben. 2006. The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. FEMS Microbiol. Lett. 262: 85-92   DOI   ScienceOn
21 McDaniel, R., S. Ebert-Khosla, D. A. Hopwood, and C. Khosla. 1993. Engineered biosynthesis of novel polyketides. Science 262: 1546-1550   DOI   PUBMED   ScienceOn
22 Neusser, D., H. Schmidt, J. Spiz$\grave{e}$k, J. Novotn$\acute{a}$, U. Peschke, S. Kaschabeck, P. Tichy, and W. Piepersberg. 1998. The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch. Microbiol. 169: 322-332   DOI   ScienceOn
23 Nelson, J. T., J. Lee, J. W. Sims, and E. W. Schmidt. 2007. Characterization of SafC, a catechol 4-O-methyltransferase involved in saframycin biosynthesis. Appl. Environ. Microbiol. 73: 3575-3580   DOI   ScienceOn
24 Grosso, F., R. L. Jones, G. D. Demetri, I. R. Judson, J.-Y. Blay, A. L. Cesne, et al. 2007. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: A retrospective study. Lancet Oncol. 8: 595-602   DOI   ScienceOn
25 Velasco, A., P. Acebo, A. Gomez, C. Schleissner, P. Rodr\guez, T. Aparicio, et al. 2005. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: Designing new cytotoxic compounds. Mol. Microbiol. 56:144-154   DOI   ScienceOn
26 Hu, Y., V. Phelan, L. Ntai, C. M. Farnet, E. Zazopoulos, and B. O. Bachmann. 2007. Benzodiazepine biosynthesis in Streptomyces refuineus. Chem. Biol. 24: 691-701   DOI   ScienceOn
27 Li, L., W. Deng, J. Song, W. Ding, Q.-F. Zhao, C. Peng, W.-W. Song, G.-L. Tang, and W. Liu. 2008. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J. Bacteriol. 190: 251-263   DOI   ScienceOn
28 Zmijewski, M. J., Jr. M. Mikolajczak, V. Viswanatha, and V. J. Hruby. 1982. Biosynthesis of the antitumor antibiotic naphthyridinomycin. J. Am. Chem. Soc. 104: 4969-4971   DOI
29 Fischbach, M. A. and C. T. Walsh. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem. Rev. 106: 3468-3496   DOI   ScienceOn
30 S$\acute{a}$nchez-Ferrer, $\acute{A}$., J. N. Rodr$\acute{i}$guez-L$\acute{o}$pez, F. Garc$\acute{i}$a-C$\acute{a}$novas, and F. Garc$\acute{i}$a-Carmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta 1247: 1-11   PUBMED   ScienceOn
31 Sieber, S. A. and M. A. Marahiel. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 105: 715-738   DOI   ScienceOn
32 Kappock, T. J. and J. P. Caradonna. 1996. Pterin-dependent amino acid hydroxylases. Chem. Rev. 96: 2659-2756   DOI   ScienceOn
33 Wolpert, M., B. Gust, B. Kammerer, and L. Heide. 2007. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153: 1413-1423   DOI   ScienceOn