DOI QR코드

DOI QR Code

Complete Mitochondrial Genome of Crangon hakodatei (Rathbun, 1902) (Crustacea: Decapoda: Crangonidae)

마루자주새우[Crangon hakodatei (Rathbun, 1902)]의 전장 미토콘드리아 유전체에 대한 분석 연구

  • Kim, Gyungryul (Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University) ;
  • Kim, Hyun-Woo (Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University)
  • 김경률 (부경대학교 의생명기계전기융합공학협동과정) ;
  • 김현우 (부경대학교 의생명기계전기융합공학협동과정)
  • Received : 2016.12.08
  • Accepted : 2016.12.19
  • Published : 2016.12.31

Abstract

Although shrimps belonging to family Crangonidae are known to be genetically divergent and ecologically important among the various benthos, any of their mitochondrial genome has not been reported yet. We here determined the complete mitochondrial genome sequence of Crangon hakodatei (Rathbun, 1902), which was collected from East China Sea ($124^{\circ}E$ and $34.5^{\circ}N$). Total mitochondrial genome length of C. hakodatei was 16,060 bp, in which 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs and a putative control region were encoded. Secondary structure prediction analysis showed that twenty tRNA genes exhibit the conserved structure but two genes, $tRNA^{Cys}$ and $tRNA^{Ser}$ (AGN), lack T and D arm, respectively. Based on the sequence similarity of the COI region from the currently reported five species belonging to genus Crangonidae, C. hakodatei was most closely related to Crangon crangon. Phylogenetic analysis of full COXI genes belonging to infraorder Caridea showed that only crangonid shrimps were clustered together with those of Dendrobranchiata. Gene order were well conserved from Penaeoidea to Caridea but $tRNA^{Pro}$ and $tRNA^{Thr}$ in Palaemonid shrimp were flipped each other by the recombination. Further study about mitochondrial genome sequences of shrimps belonging to Crangonidae should be made to know better about their evolutional relationships with other those in infraorder Caridea.

Keywords

References

  1. Abascal F, Posada D, Knight RD and Zardoya R. 2006. Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol 4, e127. http://dx.doi.org/10.1371/journal.pbio.0040127.
  2. Bracken HD, De Grave S and Felder DL. 2009. Decapod Crustacean Phylogenetics. In: Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). CRC press, NewYork, U.S.A., 281-305.
  3. Cha H, Lee J, Park C, Baik C, Hong S, Park J, Lee D, Choi Y, Hwang K and Kim Z. 2001. Shrimps of the Korean waters. National Fisheries Research and Development Institute, Busan, Korea, 1-188.
  4. Cook CE. 2005. The complete mitochondrial genome of the stomatopod crustacean Squilla mantis. BMC Genomics 6, 105. http://dx.doi.org/10.1186/1471-2164-6-105.
  5. Folmer O, Black M, Hoeh W, Lutz R and Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3, 294-299.
  6. Han Q and Li X. 2015. Review of the ecology of Crangon hakodatei Rathbun, 1902 in the Yellow Sea and Bohai Gulf. Crustaceana 88, 466-484. http://dx.doi.org/10.1163/15685403-00003422.
  7. Hayashi KI and Kim JN. 1999. Revision of the East Asian species of Crangon (Decapoda: Caridea: Crangonidae). Crustacean Res 28, 62-103. https://doi.org/10.18353/crustacea.28.0_62
  8. Lang BF and Burger G. 2007. Purification of mitochondrial and plastid DNA. Nature Protocols 2, 652-660. http://dx.doi.org/10.1038/nprot.2007.58.
  9. Laslett D and Canback B. 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172-175. https://doi.org/10.1093/bioinformatics/btm573
  10. Lin FJ, Liu Y, Sha Z, Tsang LM, Chu KH, Chan TY, Liu R and Cui Z. 2012. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes. BMC genomics 13, 631. http://dx.doi.org/10.1186/1471-2164-13-631.
  11. Liu Y and Cui Z. 2011. Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations. Mol Biol Rep 38, 403-410. http://dx.doi.org/10.1007/s11033-010-0122-2.
  12. Lohse M, Drechsel O, Kahlau S and Bock R. 2013. Organellar Genome DRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41, W575-581. http://dx.doi.org/10.1093/nar/gkt289.
  13. Lowe JB and Ward PA. 1997. Therapeutic inhibition of carbohydrate-protein interactions in vivo. J Clin Invest 100, S47-51.
  14. Lowe TM and Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  15. Ma H, Ma C, Li C, Lu J, Zou X, Gong Y, Wang W, Chen W, Ma L and Xia L. 2015. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics. Sci Rep 5, 11524. http://dx.doi.org/10.1038/srep11524.
  16. Maher I, Song KJ, Park HM and Oh CW. 2013. Feeding ecology of the sand shrimp Crangon hakodatei Rathbun, 1902 (Decapoda: Crangonidae) in the East Sea of Korea. Animal Cells Systems 17, 44-52. http://dx.doi.org/10.1080/19768354.2013.769897.
  17. Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO and Carvalho GR. 2011. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6, e19449. http://dx.doi.org/10.1371/journal.pone.0019449.
  18. Shen H, Braband A and Scholtz G. 2013. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol Phylogenet Evol 66, 776-789. http://dx.doi.org/10.1016/j.ympev.2012.11.002.
  19. Shen X, Tian M, Yan B and Chu K. 2015. Phylomitogenomics of Malacostraca (Arthropoda: Crustacea). Acta Oceanologica Sinica 34, 84-92. htt://dx.doi.org/10.1007/s13131-015-0583-1.
  20. Williams S, Foster P and Littlewood D. 2014. The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 533, 38-47. http://dx.doi.org/10.1016/j.gene.2013.10.005.
  21. Yamauchi M, Miya M and Nishida M. 2002. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene 295, 89-96. http://dx.doi.org/10.1016/S0378-1119(02)00824-7.
  22. Yamauchi MM, Miya MU and Nishida M. 2003. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene 311, 129-135. http://dx.doi.org/10.1016/S0378-1119(03)00582-1.
  23. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J and Huang Q. 2013. Ultra-deep sequencing enables highfidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience 2, 4. http://dx.doi.org/10.1186/2047-217X-2-4.