• 제목/요약/키워드: Rhodobacter sphaeroides

검색결과 72건 처리시간 0.023초

Isolation and Identification of a Photosynthetic Bacterium Containing a High Content of Coenzyme Q10

  • Jeong, Soo-Kyoung;Ahn, Soon-Cheol;Kong, In-Soo;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제11권3호
    • /
    • pp.172-176
    • /
    • 2008
  • To develop a potent strain for the production of coenzyme $Q_{10}$, a photosynthetic bacterium was isolated from silt of the Nakdong River in Korea. Using l6S-rDNA sequence analysis, the isolated strain was identified as Rhodobacter sphaeroides. A stable improvement in its $CoQ_{10}$ content was achieved by chemical mutation, upon which the content of $CoQ_{10}$(2.94 mg/g dry cell) was increased by approximately 1.9-fold, comparable to that of R. sphaeroides reported in other studies. The isolate is a potentially valuable microorganism for mass production of $CoQ_{10}$, and may provide an appropriate model for further study of economical mass production.

Supplementing Rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk

  • Bae, Gui-Seck;Choi, Ahreum;Yeo, Joon Mo;Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Moon Baek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.40-46
    • /
    • 2018
  • Objective: To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. Methods: The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. Results: The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. Conclusion: The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.

반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화 (Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology)

  • 봉기문;김공민;서민경;한지희;박인철;이철원;김평일
    • 한국유기농업학회지
    • /
    • 제25권1호
    • /
    • pp.135-148
    • /
    • 2017
  • 본 연구를 통해 논, 시설재배 밭 토양, 쓰레기장, 하천 및 호수의 퇴적 토양 등 22개소에서 분리한 총 6종의 광합성세균 중 호기 암 배양이 가능한 Rhodobacter sphaeroides PS-24를 분리하였다. 형태학적 특징으로는 그람음성의 막대모양으로, 운동성이 있었다. 분리균주의 16S rRNA 염기서열을 분석한 결과 Rhodobacter sphaeroides ATH2.4.1과 99%의 상동성을 나타내었으며, 본 연구에서 Rhodobacter spharoides PS-24로 명명하여 연구를 수행하였다. 선별균주를 modifed Van niel's yeast 배지에서 배양 후 생성된 carotenoid를 추출한 결과 $12.03{\pm}0.15mg/L$의 함량이 측정되었으며, 반응표면분석법 중 Plackett burman 분석방법과 Box-Behnken 분석방법을 통해 carotenoid 생산에 영향을 미치는 요인을 분석하고 농도를 최적화하였다. 분석결과 각각의 독립변수 yeast extract -0.4144 (1.23 g/L), $Na_2CO_3$ 0.8541 (3.71 g/L)와 $MgSO_4$ 1.00 (1.00 g/L)의 농도를 선정하였으며, 이를 바탕으로 배지 조성을 최적화한 결과 yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5 g, $CaCl_2$ 0.01 g/ liter로 선정하였다. 최적배지를 대상으로 5 L, 50 L, 500 L scale-up을 진행한 결과 최종 carotenoid는 각각 17.98 mg/L, 18.03 mg/L, 18.11 mg/L로 조사되었다. 최적배지의 경우 modified Van niel's yeast 배지보다 약 1.5배 많은 carotenoid를 생산하였으며, 대량배양을 통한 scale-up 과정 시 carotenoid의 생산량은 크게 변화하지 않는 것으로 조사되었다. 따라서 본 연구를 바탕으로 산업적으로 다양하게 사용되고 있는 carotenoid를 생산하는 광합성세균 Rhodobacter spharoides PS-24를 개발하였으며, 본 연구를 바탕으로 유기농축산에 사용이 가능한 기능성 미생물제제를 개발하고자 한다.

Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제11권4호
    • /
    • pp.224-228
    • /
    • 2008
  • With the aim of increasing the $CoQ_{10}$ production in mass culture, the effect of aeration-agitation on the $CoQ_{10}$ production using Rhodobactor sphaeroides was investigated in a l-L bioreactor. The maximum $CoQ_{10}$ production was 1.69 mg/g of dry cell weight under conditions of 50 Lux, $30^{\circ}C$, 300 rpm, and 5-vvm aeration. The $CoQ_{10}$ production was improved to produce 2.91 mg/g of dry cell weight under reduced conditions of agitation speed (200 rpm) and aeration rate (0.2 vvm). When R. sphaeroides was cultivated under more reduced DO levels during the exponential phase of the cell, the $CoQ_{10}$ production yield of 3.88-mg/g dry cell weight was the maximum obtained. Therefore, poorer conditions of aeration-agitation resulted in higher production of $CoQ_{10}$, and thus DO content was a crucial factor in the production of $CoQ_{10}$. Accordingly, it was necessary to control the DO concentration in order to enhance the $CoQ_{10}$ biosynthesis within a large-scale production.

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won;Lee, Ko-Eun;Lee, Jeong-Kug;Park, Byoung-Chul;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.219-227
    • /
    • 2008
  • The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Role of OrfQ in Formation of Light-Harvesting Complex of Rhodobacter sphaeroides under Light-Limiting Photoheterotrophic Conditions

  • LIM, SOO-KYONG;IL HAN LEE;KUN-SOO KIM;JEONG KUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.604-612
    • /
    • 1999
  • A puc-deleted cell of Rhodobacter sphaeroides grows with a doubling time longer than 160 h under light-limiting photoheterotrophic (3 Watts [W]/㎡) conditions due to an absence of the peripheral light-harvesting B800-850 complex. A spontaneous fast-growing mutant, R. sphaeroides SK101, was isolated from the puc-deleted cells cultured photoheterotrophically at 3 W/㎡. This mutant grew with an approximately 40-h doubling time. The growth of the mutant, however, was indistinguishable from its parental strain during photoheterotrophic growth at 10 W/㎡ as well as during aerobic growth. The membrane of SK101 grown aerobically did not reveal the presence of any spectral complex, while the amounts of the B875 complex and photosynthetic pigments of SK101 grown anaerobiclly in the dark with dimethylsulfoxide (DMSO) were the same as those of the parental cell. These results indicate that the oxygen control of the photosynthetic complex formation remained unaltered in the mutant. The B875 complex of SK101 under light-limiting conditions was elevated by 20% to 30% compared with that of the parental cell, which reflected the parallel increase of the bacteriochlorophyll and carotenoid contents of the mutant. When the puc was restored in SK101, the B875 complex level remained unchanged, but that of the B800-850 complex increased. The mutated phenotype of SK101 was complemented with orfQ encoding a putative bacteriochlorophyll-mobilizing protein. Accordingly, it is proposed that the mutated OrfQ of SK101 should have an altered affinity towards the assembly factor specific to the most peripheral light-harvesting complex, which could be either the B875 or the B800-850 complex.

  • PDF