DOI QR코드

DOI QR Code

Isolation and Identification of a Photosynthetic Bacterium Containing a High Content of Coenzyme Q10

  • Jeong, Soo-Kyoung (Department of Biotechnology, Pukyong National University) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, Pusan National University, School of Medicine) ;
  • Kong, In-Soo (Department of Biotechnology, Pukyong National University) ;
  • Kim, Joong-Kyun (Department of Biotechnology, Pukyong National University)
  • Published : 2008.09.30

Abstract

To develop a potent strain for the production of coenzyme $Q_{10}$, a photosynthetic bacterium was isolated from silt of the Nakdong River in Korea. Using l6S-rDNA sequence analysis, the isolated strain was identified as Rhodobacter sphaeroides. A stable improvement in its $CoQ_{10}$ content was achieved by chemical mutation, upon which the content of $CoQ_{10}$(2.94 mg/g dry cell) was increased by approximately 1.9-fold, comparable to that of R. sphaeroides reported in other studies. The isolate is a potentially valuable microorganism for mass production of $CoQ_{10}$, and may provide an appropriate model for further study of economical mass production.

Keywords

References

  1. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res., 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Choi, J.H., Y.W. Seo and J.H. Seo. 2005. Biotechnological production and applications of coenzyme $Q_{10}$. Appl. Microbiol. Biotechnol., 68, 9-15 https://doi.org/10.1007/s00253-005-1946-x
  3. Ernster, L. and G. Dallner. 1995. Biochemical, physio-logical and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1271, 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
  4. Gale, P.H., F.R. Koniuszy, A.G. Page Jr. and K. Folkers. 1961. Coenzyme Q. XXIV. On the significance of coenzyme $Q_{10}$ in human tissues. Arch. Biochem. Biophys., 93, 211-213 https://doi.org/10.1016/0003-9861(61)90251-X
  5. Grant, C.M., F.H. Maclver and I.W. Dawes. 1997. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett., 410, 219-222 https://doi.org/10.1016/S0014-5793(97)00592-9
  6. Gu, S.B., J.M. Yao, Q.P. Yuan, P.J. Xue, Z.M. Zheng and Z.L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem., 41, 1908-1912 https://doi.org/10.1016/j.procbio.2006.04.002
  7. Ha, S.J., S.Y. Kim, J.H. Seo, H.J. Moon, K.M. Lee and J.K. Lee. 2007. Controlling the sucrose concentration in-creases Coeuzyme $Q_{10}$ production in fed-batch cul-ture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol., 76, 109-116 https://doi.org/10.1007/s00253-007-0995-8
  8. Hall, T.A. 1999. BioEdit: a user-friendly biological se-quence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Series, 41, 95-98
  9. James, A.M., R.A.J. Smith and M.P. Murphy. 2004. Anti-oxidant and prooxidant properties of mitochondrial coenzyme Q. Arch. Biochem. Biophys., 423, 47-56 https://doi.org/10.1016/j.abb.2003.12.025
  10. Kokua, H., I. Eroglu, U. Gunduz, M. Yucel and L. Turker. 2003. Aspects of of the metabolism of hydrogen pro-duction by Rhodobacter sphaeroides. Int. J. Hydrogen Energ., 27, 1315-1329
  11. Lee, J.K., G. Her, S.Y. Kim and J.H. Seo. 2004. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Prog., 20, 51-56 https://doi.org/10.1021/bp034213e
  12. Lipshutz, B.H., P. Mollard, S.S. Pfeiffer and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme $Q_{10}$. J. Am. Chem. Soc., 124, 14282-14283 https://doi.org/10.1021/ja021015v
  13. Matsumura, M., T. Kobayashi and S. Aiba. 1983. An-aerobic production of ubiquinone-10 by Paracoccus dentrificans. Eur. J. Appl. Microbiol. Biotechnol., 17, 85-89 https://doi.org/10.1007/BF00499856
  14. Nagadomi, H., T. Kitamura, M. Watanabe and K. Sasaki. 2000. Simultaneous removal of chemical oxygen de-mand (COD), phosphate, nitrate and hydrogen sulfide in the synthetic sewage wastewater using porous cera-mic immobilized photosynthetic bacteria. Biotechnol. Lett., 22, 1369-1374 https://doi.org/10.1023/A:1005688229783
  15. Negishi, E., S.Y. Liou, C. Xu and S. Huo. 2002. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme $Q_{10}$. Org. Lett., 4, 261-264 https://doi.org/10.1021/ol010263d
  16. Neter, J., W. Wasserman and M.H. Kutner. 1985. Applied Linear Statistical Models. 2nd ed. Irwin Press, Home-wood, IL, 574-579
  17. Park, Y.C., S.J. Kim, J.H. Choi, W.H. Lee, K.M. Park, M. Kawamukai, Y.W. Ryu and J.H. Seo. 2005. Batch and fed-batch production of coenzyme $Q_{10}$ in recombinant Escherichia coli containing the decaprenyl dipho-sphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol., 67, 192-196 https://doi.org/10.1007/s00253-004-1743-y
  18. Pfenning, N. 1967. Photosynthetic bacteria. Annu. Rev. Microbiol., 21, 285-324 https://doi.org/10.1146/annurev.mi.21.100167.001441
  19. Sasaki, K, T. Tanaka and S. Nagai. 1998. Use of photo-synthetic bacteria for production of SCP and chemi-cals from organic wastes. In: Bioconversion of Waste Materials to Industrial Products. Martin, A.M., ed. Blackie Academic and Professionals, New York, 247-291
  20. Sasaki, K., M. Watanabe, Y. Suda, A. Ishizuka and N. Noparatnaraporn. 2005. Applications of photosyn-thetic bacteria for medical fields. J. Biosci. Bioeng., 100, 481-488 https://doi.org/10.1263/jbb.100.481
  21. Takahashi, S., T. Nishino and T. Koyama. 2003. Isolation and expression of Paracoccus dentrificans decaprenyl diphosphate synthese gene for production of ubi-quinone-10 in Escherichia coli. Biochem. Eng. J., 16, 183-190 https://doi.org/10.1016/S1369-703X(03)00035-4
  22. Takeno, K., K. Sasaki and N. Nishio. 1999. Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106. J. Biosci. Bioeng., 88, 410-415 https://doi.org/10.1016/S1389-1723(99)80218-7
  23. Urakami, T. and M. Hori-Okubo. 1988. Production of isoprenoid compounds in the facultative methylotroph Protomonas extorquents. J. Ferment. Technol., 66, 323-332 https://doi.org/10.1016/0385-6380(88)90111-2
  24. Urakami, T. and T. Yoshida. 1993. Production of ubi-quinone and bacteriochlorophyll $\alpha$ by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Fer-ment. Bioeng., 76, 191-194 https://doi.org/10.1016/0922-338X(93)90006-T
  25. Wu, Z.F., P.F. Weng, G.C. Du and J. Chen. 2001. Advances of coenzyme $Q_{10}$ function studies. J. Ningbo Univ., 2, 85-88
  26. Yoshida, H., Y. Kotani, K. Ochiai and K. Araki. 1998. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol., 44, 19-26 https://doi.org/10.2323/jgam.44.19
  27. Zhang, D., B. Shrestha, W. Niu, P. Tian and T. Tan. 2007. Phenotypes and fed-batch fermentation of ubiquin-one-overproducing fission yeast using ppt1 gene. J. Biotechnol., 128, 120-131 https://doi.org/10.1016/j.jbiotec.2006.09.012

Cited by

  1. Reinvestigation of Coenzyme Q10 Isolation from Sporidiobolus johnsonii vol.8, pp.6, 2011, https://doi.org/10.1002/cbdv.201000278
  2. Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides vol.11, pp.4, 2008, https://doi.org/10.5657/fas.2008.11.4.219
  3. Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides vol.11, pp.4, 2008, https://doi.org/10.5657/fas.2008.11.4.224