Browse > Article
http://dx.doi.org/10.11625/KJOA.2017.25.1.135

Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology  

Bong, Ki-Moon (전남생물산업진흥원 생물방제연구센터)
Kim, Kong-Min (전남생물산업진흥원 생물방제연구센터)
Seo, Min-Kyoung (전남생물산업진흥원 생물방제연구센터)
Han, Ji-Hee (국립농업과학원 농업생물부 농업미생물과)
Park, In-Chul (국립농업과학원 농업생물부 농업미생물과)
Lee, Chul-Won (전남대학교 자연과학대학 화학과)
Kim, Pyoung-Il (전남생물산업진흥원 생물방제연구센터)
Publication Information
Korean Journal of Organic Agriculture / v.25, no.1, 2017 , pp. 135-148 More about this Journal
Abstract
Response Surface Methodology (RSM), which is combining with Plackett-Burman design and Box-Behnken experimental design, was applied to optimize the ratios of the nutrient components for carotenoid production by Rhodobacter sphaeroides PS-24 in liquid state fermentation. Nine nutrient ingredients containing yeast extract, sodium acetate, NaCl, $K_2HPO_4$, $MgSO_4$, mono-sodium glutamate, $Na_2CO_3$, $NH_4Cl$ and $CaCl_2$ were finally selected for optimizing the medium composition based on their statistical significance and positive effects on carotenoid yield. Box-Behnken design was employed for further optimization of the selected nutrient components in order to increase carotenoid production. Based on the Box-Behnken assay data, the secondary order coefficient model was set up to investigate the relationship between the carotenoid productivity and nutrient ingredients. The important factors having influence on optimal medium constituents for carotenoid production by Rhodobacter sphaeroides PS-24 were determined as follows: yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5g, $CaCl_2$ 0.01 g, per liter. Maximum carotenoid yield of 18.11 mg/L was measured by confirmatory experiment in liquid culture using 500 L fermenter.
Keywords
carotenoid; response surface methodology; Rhodoabacter sphaeroides; optimal medium constituent;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Plackett, R. L. and J. P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.   DOI
2 Qasim, K. B., S. Vikram, and G. Rani. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39: 203-209.   DOI
3 Sung, H. Y. 2004. Isolation and identification of novel bacterium producing carotenoid and cloning of carotenoid gene clusters from Jeju marine environment. MS. Thesis, Jeju National University, Jeju, Korea.
4 Van Niel, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriological Reviews 8: 1.
5 Vos, P., G. Garrity, D. Jones, N. R. Krieg, W. Ludwig, W. Rainey, and Whitman (eds). 2011. Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media, USA.
6 Wang, C. W., M. K. Oh, J. C. Liao. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng. 20; 62(2): 235-241.   DOI
7 Pierre, A. 1997. Food carotenoids and cancer prevention: An overview of current resarch. Trends in Food Sci. Tech. 8: 406   DOI
8 Armstrong, G. A., M. Alberti, F. Leach, and J. E. Hearst. 1989. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen Genet. 216: 254-68.   DOI
9 Armstrong, G. A. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorfultale. Annu Rev. Microbiol. 51: 29-59.
10 Bartley, G. E. and P. A. Scolnik. 1989. Carotenoid biosynthesis in photosynthetic bacteria. J. biol. Chem. 267: 13109-13113.
11 Biebl, H. and N. P. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed culture with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9-16.   DOI
12 Chen, D., Y. Han, and Z. Gu, 2006. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochemistry. 41(8): 1773-1778.   DOI
13 Gu, Z., D. Chen, Y. Han, Z. Chen, and F. Gu. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. Food Science and Technology. 41(6): 1082-1088.
14 Hong, S. P., M. H. Kim, and J. K. Hwang. 1998. Biological Functions and Production Technology of Carotenoids. J. Korean Soc. Food Sci. Nutr. 27(6): 1297-1306
15 Jeong, Y. S., J. W. Kim, E. S. Lee, N. Y. Gil, S. S. Kim, and S. T. Hong. 2014. Optimization of alkali extraction for preparing oat protein concentrates from oat groat by response surface methodology. J. Kor. Soc. Food Sci. Nutr. 43: 1462-1466.   DOI
16 Joshi, S., S. Yadav, A. Nerurkar, and A. J. Desai. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J. Microbiol. Biotechnol. 17: 313-319.
17 Klaui, H. 1982. Industrial and commercial uses of carotenoids, In Britton G and goodwin TW (ed.), Carotenoid chemistry and biochemistry. Pergamon Press, Inc., Oxford, England. pp. 309-328
18 Nells, H. J. 1991. Microbial sources of carotenoid pigments used in foods feeds, Journal of Applied Bacteriology. 70: 181   DOI