• 제목/요약/키워드: Rhizobacterial

검색결과 34건 처리시간 0.035초

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.

식물근권세균 처리에 의한 감귤 검은점무늬병에 대한 방제 효과 (Suppression of Citrus Melanose on the Leaves Treated with Rhizobacterial Strains after Inoculation with Diaporthe citri)

  • 고윤정;강소영;전용철
    • 식물병연구
    • /
    • 제18권4호
    • /
    • pp.331-337
    • /
    • 2012
  • 감귤 검은점무늬병은 감귤 재배에 있어서 매우 중요한 병으로 감귤의 상품 가치를 떨어뜨리고 경제적 손실을 유발한다. 다른 감귤병과 마찬가지로 감귤 검은점무늬병 방제에는 주로 화학 농약이 사용된다. 최근 농약의 부작용 때문에 농약을 대체할 수 있는 방제 수단이 절실히 요구되고 있다. 본 연구에서는 감귤 검은점무늬병균 Diaporthe citri에 항균효과가 있는 식물근권세균 TRH423-3, MRL408-3, THJ609-3, TRH415-2을 선발하였다. 이들 세균의 감귤 검은점무늬병에 방제 효과가 있는지 알아보기 위해 감귤 잎에 전 접종한 후 감귤 검은점무늬병균을 접종하였다. 선발된 모든 식물근권세균이 감귤 검은점무늬병에 대해 방제 효과를 나타내었고 방제 정도는 식물근권세균의 균주에 따라 차이가 있었다. 감귤 검은점무늬병균을 접종한 후 추가로 식물근권세균을 접종하였더니 모든 처리구에서 방제 효과가 증진되었다. 한편, 식물근권세균 rDNA의 internal transcript spaces 염기서열을 분석한 결과 MRL408-3와 TRH423-3은 Burkholderia gladioli로, TRH415-2은 Pseudomons fluorescens로 그리고 THJ609-3은 Pseudomonas pudia로 동정되었다. 이들 선발된 식물근권세균은 화학적 방제 수단의 적용이 제한된 친환경 감귤 재배지에서 가치 있게 사용될 수 있을 것으로 판단된다.

항균활성 식물근권세균 전 처리에 의한 감귤 궤양병 억제 (Suppression of Citrus Canker by Pretreatment with Rhizobacterial Strains Showing Antibacterial Activity)

  • 양지순;강소영;전용철
    • 식물병연구
    • /
    • 제20권2호
    • /
    • pp.101-106
    • /
    • 2014
  • 감귤 궤양병은 Xanthomonas citri subsp. citri (Xcc)에 의해 발생하는 감귤에서 매우 중요한 병 중에 하나이다. 비록 한국에서 대부분 재배되는 감귤인 온주밀감은 감귤 궤양병에 대해 중도저항성이긴 하지만 지난 10년전 이래로 자주 발생되었다. 감귤에서 다른 병과 마찬가지로 감귤 궤양병도 포장에서 주로 화학농약에 의해 방제되고 있다. 농약의 부작용으로 인해 최근 다른 방제 수단이 요구되고 있다. 본 연구에서는 Xcc에 직접적인 항균 활성이 있는 식물근권세균 TRH423-3, MRL408-3, THJ609-3, TRH415-2을 선발하였다. 선발된 식물근권세균을 감귤 잎에 전 처리하였더니 감귤 궤양병균을 접종한 후 병 발생이 억제되었다. 유사하게, 포장 실험에서도 선발된 식물근권세균을 여러 차례 살포한 감귤나무에서 무처리한 나무에 비해 병이 적게 진전 되었다. 따라서 선발된 식물근권세균이 친환경 감귤농가에서 대체 수단으로 가치가 있다고 생각된다.

식물근권세균을 처리한 감귤 잎에서 주사전자현미경을 통한 감귤 더뎅이병균의 생장 억제 관찰 (Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope)

  • 박재신;송민아;전용철
    • 식물병연구
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 감귤 더뎅이병을 일으키는 E. fawcettii에 항균효과가 있는 식물근권세균 B. gladioli MRL408-3, TRH423-3, P. fluorescens THJ609-3, TRH415-2에 의해 감귤 더뎅이병이 감소하였다. 이들 식물근권세균을 전 처리한 Satsuma mandarin 감귤 잎에 감귤 더뎅이병균을 접종한 후 주사전자현미경을 이용하여 관찰하였다. 식물근권세균을 전 처리한 잎에서 무처리한 잎에 비해 감귤 더뎅이병의 병반수가 감소되었다. 특히 B. gladioli MRL408-3 균주를 전 처리한 식물에서 감귤 더뎅이병의 병반수가 뚜렷하게 억제되었다. 주사전자현미경을 통해 관찰 결과 식물근권세균을 전 처리한 감귤 잎 표면에서 병원균의 발아율과 발아관의 길이가 감소되는 것을 확인하였다. 시판 농약인 imibenconazole을 처리한 잎에서 감귤 더뎅이병균의 성장이 가장 뚜렷하게 억제되었는데, 이는 병반수가 가장 적게 형성된 것과 상통한다. 이들 결과를 통하여 식물근권세균에 의해 감귤 잎 표면에서 감귤 더뎅이병균의 발아와 생장이 억제되고 그 결과 감귤 더뎅이병의 발생이 감소되는 것으로 판단된다.

Root-Dipping Application of Antagonistic Rhizobacteria for the Control of Phytophthora Blight of Pepper Under Field Conditions

  • Sang, Mee-Kyung;Oh, Ji-Yeon;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.109-112
    • /
    • 2007
  • This study was to examine the efficacy of a root-dipping application of antagonistic bacterial strains for the control of Phytophthora blight of pepper caused by P. capcisi, and to evaluate their plant growth-promoting effects in the field in 2005 and 2006. The candidate antagonistic rhizobacterial strains CCR04, CCR80, GSE09, ISE13, and ISE14 were treated by dipping plant roots with bacterial suspensions prior to transplanting. The candidate rhizobacterial strains CCR04, CCR80, GSE09, and ISE14 significantly (P=0.05) reduced the disease incidence and the area under the disease progress curves when compared to buffer-treated controls in at least a year test. The metalaxy l(fungicide-treated control) resulted in one of the lowest disease incidences among the treatments in both years. Moreover, the strains CCR04, CCR80, GSE09, and ISE13 significantly (P=0.05) increased the fruit weights and/or numbers of peppers in at least a year test compared to the buffer-treated controls. These results suggest that the antagonistic rhizobacterial strains CCR04, CCR80, and GSE09 could be efficient biocontrol agents by controlling Phytophthora blight of pepper and promoting the plant growth when treated with root-dipping at transplanting.

Comparative Study of Rhizobacterial Community Structure of Plant Species in Oil-Contaminated Soil

  • Lee, Eun-Hee;Cho, Kyong-Suk;Kim, Jai-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권9호
    • /
    • pp.1339-1347
    • /
    • 2010
  • In this study, the identity and distribution of plants and the structure of their associated rhizobacterial communities were examined in an oil-contaminated site. The number of plant species that formed a community or were scattered was 24. The species living in soil highly contaminated with total petroleum hydrocarbon (TPH) (9,000-4,5000 mg/g-soil) were Cynodon dactylon, Persicaria lapathifolia, and Calystegia soldanella (a halophytic species). Among the 24 plant species, the following have been known to be effective for oil removal: C. dactylon, Digitaria sanguinalis, and Cyperus orthostachyus. Denaturing gradient gel electrophoresis (DGGE) profile analysis showed that the following pairs of plant species had highly similar (above 70%) rhizobacterial community structures: Artemisia princeps and Hemistepta lyrata; C. dactylon and P. lapathifolia; Carex kobomugi and Cardamine flexuosa; and Equisetum arvense and D. sanguinalis. The major groups of rhizobacteria were Beta-proteobacteria, Gamma-proteobacteria, Chloroflexi, Actinobacteria, and unknown. Based on DGGE analysis, P. lapathifolia, found for the first time in this study growing in the presence of high TPH, may be a good species for phytoremediation of oil-contaminated soils and in particular, C. soldanella may be useful for soils with high TPH and salt concentrations. Overall, this study suggests that the plant roots, regardless of plant species, may have a similar influence on the bacterial community structure in oil-contaminated soil.

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

Effect of Herbicide Combinations on Bt-Maize Rhizobacterial Diversity

  • Valverde, Jose R.;Marin, Silvia;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1473-1483
    • /
    • 2014
  • Reports of herbicide resistance events are proliferating worldwide, leading to new cultivation strategies using combinations of pre-emergence and post-emergence herbicides. We analyzed the impact during a one-year cultivation cycle of several herbicide combinations on the rhizobacterial community of glyphosate-tolerant Bt-maize and compared them to those of the untreated or glyphosate-treated soils. Samples were analyzed using pyrosequencing of the V6 hypervariable region of the 16S rRNA gene. The sequences obtained were subjected to taxonomic, taxonomy-independent, and phylogeny-based diversity studies, followed by a statistical analysis using principal components analysis and hierarchical clustering with jackknife statistical validation. The resilience of the microbial communities was analyzed by comparing their relative composition at the end of the cultivation cycle. The bacterial communites from soil subjected to a combined treatment with mesotrione plus s-metolachlor followed by glyphosate were not statistically different from those treated with glyphosate or the untreated ones. The use of acetochlor plus terbuthylazine followed by glyphosate, and the use of aclonifen plus isoxaflutole followed by mesotrione clearly affected the resilience of their corresponding bacterial communities. The treatment with pethoxamid followed by glyphosate resulted in an intermediate effect. The use of glyphosate alone seems to be the less aggressive one for bacterial communities. Should a combined treatment be needed, the combination of mesotrione and s-metolachlor shows the next best final resilience. Our results show the relevance of comparative rhizobacterial community studies when novel combined herbicide treatments are deemed necessary to control weed growth.

Effects of Inoculation of Rhizomicrobial Strains on Plant Growth at the Early Germination Stage

  • Yoo, Jae Hong
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.153-157
    • /
    • 2014
  • Plant-growth-promoting rhizobacteria can affect plant growth by various direct and indirect mechanisms. This study was conducted to determine the ability of some rhizobacterial strains to enhance the seed germination of Lactuca sativa (lettuce) and Raphanus sativus (radish). Seeds were inoculated using a spore suspension ($1{\times}10^7cfumL^{-1}$) and incubated in a growth chamber at $28^{\circ}C$ under dark conditions and 65% RH. Azotobacter chroococcum and LAP mix inoculation increased the plumule length of L. sativa by 1.3, 0.8, and 0.7 cm, respectively, in comparison to the uninoculated control. Pseudomonas putida showed an increase of only 0.6 cm in plumule length when compared to the control. Inoculation of A. chroococcum, P. putida, and LAP mix enhanced the seed germination rate of R. sativus, by 10, 5, and 30%, respectively, in comparison with the uninoculated seeds. The results demonstrated that the inoculation of seeds by select rhizobacterial strains showed remarkable enhancement to the radicle length of lettuce and radish seedlings.

Effect of Transgenic Rhizobacteria Overexpressing Citrobacter braakii appA on Phytate-P Availability to Mung Bean Plants

  • Patel, Kuldeep J.;Vig, Saurabh;Nareshkumar, G.;Archana, G.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1491-1499
    • /
    • 2010
  • Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-phosphorus (P) available to plants. In the present study, the Citrobacter braakii phytase gene (appA) was overexpressed in rhizobacteria possessing plant growth promoting (PGP) traits, for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broadhost-range expression vector pBBR1MCS-2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains), and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying levels of phytase activity, ranging from 10-folds to 538-folds higher than the corresponding control strains. The transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed the highest expression of phytase (~8 U/mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having the ability to secrete organic acid showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA overexpressing rhizobacteria showed increased P content, and dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semisolid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of the overexpression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.