DOI QR코드

DOI QR Code

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A. (Botany and Microbiology Department, Faculty of Science, Assiut University) ;
  • Yoo, Jaehong (National Academy of Agriculture Science, RDA) ;
  • Joo, Jin Ho (Department of Biological Environment, Kangwon National University)
  • Received : 2016.11.02
  • Accepted : 2016.11.18
  • Published : 2016.12.31

Abstract

Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

Keywords

References

  1. Bacilio, M., H. Rodriguez, and M. Moreno. 2004. Mitigation of salt stress in wheat seedlings by gfp-tagged Azospirillum lipoferum. Biol. Fertil. soils 40:188-193.
  2. Bais, H.P., S.W. Park, T.L. Weir, R.M. Callaway, and J.M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends in Plant Science 9:26-32. https://doi.org/10.1016/j.tplants.2003.11.008
  3. Benizri, E., A. Courtade, C. Picard, and A. Guckert. 1998. Role of maize root exudates in the production of auxins by Pseudomonas fluorescens M.3.1: Short communication. Soil Biol. Biochem. 30:1481-1484. https://doi.org/10.1016/S0038-0717(98)00006-6
  4. Bharathi, R., R. Vivekananthan, S. Harish, A. Ramanathan, and R. Samiyappan. 2004. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot. 23:835-843. https://doi.org/10.1016/j.cropro.2004.01.007
  5. Blakeman, J.P. and I.D.S. Brodie. 1977. Competition for nutrients between e piphytic microorganisms and germination of spores of plant pathogens on beet root leaves. Physiol. Plant Pathol. 10:29-42. https://doi.org/10.1016/0048-4059(77)90005-4
  6. Bowen, G.D. and A.D. Rovira, 1999. The rhizsphere and its management to improve plant growth. Adv. Agron. 66:1-102. https://doi.org/10.1016/S0065-2113(08)60425-3
  7. Brown, M.E. 1982. Seed and root bacterization. Annu. Rev. Phytopathol. 12:181-197.
  8. Burd, G.I., D.G. Dixon, and R.R. Glick. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46:237-245. https://doi.org/10.1139/w99-143
  9. Bybordi, A. 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):128-133.
  10. Bybordi, A., S.J. Tabatabaei, and A. Ahmadev. 2010. Effect of salinity on the growth and peroxidase and IAA oxidase activities in Canola, J. Food Agric. Environ. 8(1):109-112.
  11. Cakmakc, R.I., D.F. Aydin, and A.F. Sahin. 2006. Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38:1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  12. Cattelan, A.J., P.G. Hartel, and J.J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  13. Ciardi, J.A., D.M. Tieman, S.T. Lund, J.B. Jones, R.E. Stall, and H.J. Klee. 2000. Response to Xanthomonascampestrispv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology 123:81-92. https://doi.org/10.1104/pp.123.1.81
  14. De Salamone, I.E.G., R.K. Hynes, and L.M. Nelson. 2001. Can. J. Microbiol. 47:404-411. https://doi.org/10.1139/w01-029
  15. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecol. 36:184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  16. Flowers, T.J., A. Garcia, M. Koyama, and A.R. Yeo. 1997. Breeding for salt tolerance in crop plants: the role of molecular.biology. Acta. Physio. Plantarum. 19:427-433. https://doi.org/10.1007/s11738-997-0039-0
  17. Frankenberger, J.r. and M. Arshad. 1991. Microbial production of plant growth regulating substances in soil.p.162-171. In C. Keel, B. Koller, and G. Defago (Eds.) Plant Growth-Promoting Rhizobacteria, Progress and Prospects. The Second International Workshop on PGPR. Interlaken, Switzerland, 14-19 October 1990.
  18. Glick, B.R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41:109-114. https://doi.org/10.1139/m95-015
  19. Glick, B.R., D.M. Karaturovic, and P.C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can. J. Microbiol. 41:533-536. https://doi.org/10.1139/m95-070
  20. Glick, B.R., B. Todorovic, J. Czarny, Z. Cheng, J. Duan, and B.M. Conkey. 2007. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences 26:227-242. https://doi.org/10.1080/07352680701572966
  21. Glick, B.R., C.L. Patten, G. Holguin, and D.M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, UK.
  22. Glick, R.B. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Hindawi Publishing Corporation Scientifica Volume 2012, Article ID 963401, 15 pages http://dx.doi.org/10.6064/2012/963401.
  23. Gupta, A., M. Gopal, and K.V. Tilak. 2000. Mechanism of plant growth promotion by rhizobacteria. Indian J. Exp. Biol. 38:856-862.
  24. Hasegawa, P.M., R.A. Bressan, and J.K. Zhu. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol.Biol., 51:463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  25. Honma, M. and T. Shimomura. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid, Agricultural and Biological Chemistry 42(10):1825-1831. https://doi.org/10.1271/bbb1961.42.1825
  26. Joo, G.J., Y.M. Kim, J.T. Kim, I.K. Rhee, J.H. Kim, and I.J. Lee. 2005. Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology 43:510-515.
  27. Kang, S.M., G.J. Joo, M. Hamayun, C.I. Na, D.H. Shin, Y.K. Kim, J.K. Hong, and I.J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobactercalcoaceticus and its effect on plant growth. Biotechnol. Lett. 31:277-281. https://doi.org/10.1007/s10529-008-9867-2
  28. Khan, M.A. and I.A. Ungar. 1985. The role of hormones in regulating the germination of polymorphic seeds and early seedling growth of Atriplextri angularis Willd. under saline conditions. Physiologia Plantarum 63:109-113. https://doi.org/10.1111/j.1399-3054.1985.tb02827.x
  29. Kim, K., S. Hwang, V.S. Saravanan, and T. Sa. 2012. Effect of Brevibacteriumiodinum RS16 and Methylobacteriumoryzae CBMB20 inoculation on seed germination and early growth of Maize and Sorghum-sudangrass hybrid seedling under different salinity levels. Korean J. Soil Sci. Fert. 45(1):51-58. https://doi.org/10.7745/KJSSF.2012.45.1.051
  30. Kloepper, J.W., R. Lifshitz, and R.M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity, Trends Biotechnol. 7:39-44. https://doi.org/10.1016/0167-7799(89)90057-7
  31. Kokelis, B., N. Kloepper, and M.S. Reddy. 2006. Plant growth promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. App. Soil. Ecol. 31:91-100. https://doi.org/10.1016/j.apsoil.2005.03.007
  32. Kumar, D. 1995. Salt tolerance in oilseed brassicas-present status and future prospects.Plant Breed. Abst. 65:1438-1447.
  33. Lalande, R., N. Bissonnette, D. Coutlee, and H. Antoun. 1989. Identification of rhizobacteria and determination of their plantgrowth promoting potential, Plant Soil. 115:7-11. https://doi.org/10.1007/BF02220688
  34. Lugtenberg, B.J.J., T.F.C. Chin-A-Woeng, and G.V. Bloemberg. 2002. Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek. 81:373-383. https://doi.org/10.1023/A:1020596903142
  35. Ma, W., D.M., Penrose, and B.R. Glick. 2002. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation," Canadian Journal of Microbiology 48(11):947-954. https://doi.org/10.1139/w02-100
  36. Miller, K.J. and J.R. Woods. 1996. Osmoadaptation by rhizosphere bacteria; Anne. Rev. Microbiol. 50:101-136. https://doi.org/10.1146/annurev.micro.50.1.101
  37. Mishra, M., U. Kumar, P.K. Mishra, and V. Prakash. 2010. Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicerarietinum L. growth and germination under salinity. Advances in Biological Research 4(2):92-96.
  38. Nakkeeran, S., W.G. Dilantha Fernando, and Z.A. Zaki Siddiqui. 2005. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseasessiddiqui (ed.), PGPR: Biocontrol and Biofertilization, 257-296. Springer, Dordrecht, The Netherlands.
  39. Nihorimbere, V., M. Ongena, M. Smargiassi, and P. Thonart. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 15(2):327-337.
  40. Niranjan-Raj, S., N.P. Shetty, and H.S. Shetty. 2004.Seed-biopriming with Pseudomonas fluorescens isolates, enhances growth of pearl millet plants and induce resistance against downy mildew. Int. J. Pest Manage. 50:41-48. https://doi.org/10.1080/09670870310001626365
  41. Okon, Y. and C. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum: An evaluation of 20 years of worldwide field inoculation. Soil Biol. Biochem. 26:1591-1601. https://doi.org/10.1016/0038-0717(94)90311-5
  42. Okon, Y. and Y. Kapulnik. 1986. Development and function of Azospirillum inoculated roots. Plant Soil 90:3-16. https://doi.org/10.1007/BF02277383
  43. Ozturk, A., O. Caglar, and F. Sahin. 2003.Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci. 166:262-266. https://doi.org/10.1002/jpln.200390038
  44. Ping, L.Y. and W. Boland, 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9:263-266. https://doi.org/10.1016/j.tplants.2004.04.008
  45. Raju, N.S., S.R. Niranjana, G.R. Janardhana, H.S. Prakash, H.S. Shetty, and S.B. Mathur. 1999.Improvement of seed quality and field emergence of Fusariummoniliforme infected sorghum seeds using biological agents. J. Sci. Food Agric. 79:206-212. https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<206::AID-JSFA167>3.0.CO;2-Y
  46. Rodriguez, A. 2000. Potassium transport in fungi and plants. Biochim. Biophys. Acta. 1469:1-30. https://doi.org/10.1016/S0304-4157(99)00013-1
  47. Serrano, R., J.M. Mulet, G. Rios, J.A. Marquez, I.F. De Larriona, M.P. Leube, Mendizabal, I., Pascual, A. Ahuir, M., Proft, R., Ros, and C. Montesinos. 1999. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50:1023-1036. https://doi.org/10.1093/jxb/50.Special_Issue.1023
  48. Shaukat, K., S. Affrasayab, and S. Hasnain. 2006. Growth responses of Helianthus annus to plant growth promoting rhizobacteria used as a biofertilizer. J. Agric. Res. 1:573-581.
  49. Taylor, A.G. and G.E. Harman. 1990, Concept and technologies of selected seedtreatments. Annu. Rev. Phytopathol. 28:321-339. https://doi.org/10.1146/annurev.py.28.090190.001541
  50. Tripathi, S., A. Tripathi, D.C. Kori, and S. Tiwari. 1998. Effect of tree leaves aqueous extracts on germination and seedlings growth of soyabean. Allelopathy J. 5(1):75-82.
  51. Vidhyasekaran, P. and Muthamilan, M. 1995. Development of formulations of Pseudomonasfluorescens for control of chickpea wilt.Plant. Dis. 79:782-786. https://doi.org/10.1094/PD-79-0782
  52. Wu, S.C., Z.H. Cao, Z.G. Li, K.C. Cheung, and M.H. Wong. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma. 125:155-166. https://doi.org/10.1016/j.geoderma.2004.07.003
  53. Zaidi, A., M.S. Khan, M. Ahemadand, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hungarica. 56:263-284. https://doi.org/10.1556/AMicr.56.2009.3.6
  54. Zhang, H.X., J.N. Hodson, J.P. Williams, and E. Blumwald. 2001. Engineering salt tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Nat. Acad. Sci. USA. 48:12832-12836.