• Title/Summary/Keyword: Rf-magnetron sputter

Search Result 278, Processing Time 0.026 seconds

Improvement of c-axis orientation of ZnO thin film prepared on pre-heated substrate with cooling during RF sputter deposition (RF 스퍼터를 이용하여 미리 가열된 기판을 냉각하며 증착한 ZnO 박막의 c축 배향성 향상에 관한 연구)

  • Park, Sung-Hyun;Lee, Soon-Beom;Shin, Young-Hwa;Lee, Neung-Heon;Ji, Seung-Han;Kwon, Sang-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • In this paper, ZnO thin films were prepared on p-Si(100) by RF magnetron sputtering. Before the depostion, the substrates were pre-heated to 500, 400, 300, $200^{\circ}C$ or not. During the deposition, the substrates were cooled down naturally or kept and then the films were investigated by XRD(X-ray diffraction) and SEM (scanning micro scope). It is showed the most outstanding result that the film was prepared on the substrate were cooled from $400^{\circ}C$. When the substrate was cooled from a certain temperature during deposition, it could be improve the c-axis orientation and useful for application of SAW(surface acoustic wave) filter and FBAR(film bulk acoustic wave resonator) device.

  • PDF

Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate (4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과)

  • Soo-Young Moon;Min-Yeong Kim;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Adhesion Enhancement of Thin Film Metals on Polyimide Substrates by Bias Sputtering

  • Kim S. Y.;Jo S. S.;Kang J. S.;Kim Y. H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.207-212
    • /
    • 2005
  • Al, Ti, Ta, and Cr thin films were deposited on a polyimide substrate using DC magnetron sputter to study the adhesion characteristics of metal films on polyimide substrates, while RF bias of 0 - 400 W was applied to the substrate during DC sputtering. The adhesion strength was evaluated using a 90-degree peel test. The peel tests showed that the adhesion strength was enhanced by applying the RF bias to the substrate in all specimens. Scanning electron microscopy and Auger depth profile of the fractured surfaces indicate that the polyimide underwent cohesive failure during peeling and heavy deformation was also observed in the metal films peeled from the polyimide substrate when the RF bias applied during the deposition. Cross-sectional transmission electron microscopy revealed that the metal/polyimide interface was not clear and complicated. This complicated interface, likely formed due to the RF bias applied to the substrate, was attributed to the adhesion enhancement observed during the bias sputtering.

  • PDF

금속 기판 위에 증착된 Al2O3-ZrO2 박막의 내마모 특성 연구

  • O, Ji-Yong;Lee, Chang-Hyeon;Jang, Bu-Seong;Son, Seon-Yeong;Bae, Gang;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.125.1-125.1
    • /
    • 2015
  • 산업 자동화기술이 발달함에 따라 다양한 용도의 부품개발과 산업 장비들의 부품에 대한 수요가 날로 증가하게 되어 산업이 발달하게 된 반면, 장비의 성능을 저하시키는 마모에 대한 문제점이 제기되고 있다. 이에 대한 해결책으로 내열성 및 내마모성을 가지는 박막코팅기술이 요구되고 있다. 특히, Alumina (Al2O3)와 Zirconia (ZrO2)는 내식성과 내열성, 내마모성의 우수한 특성을 지닌 재료이며, 이들을 기어, 베어링, 실린더 등 각종 기계의 부품에 코팅하여 내마모성을 가지게 한다. 본 실험에서는 Al2O3 : ZrO2 = 50 : 50 wt% 의 비율로 혼합한 target이 사용되었다. 그리고 Al2O3-ZrO2 target을 사용하여 RF-magnetron sputtering 방법으로 박막을 제작 하였다. sputter시에 power를 20 W에서 80 W까지 변화를 주었다. AFM, SEM, XRD를 통하여 알루미늄 기판위에 증착된 Al2O3-ZrO2 박막의 구조적 특성을 알아보았으며, 내마모성 테스트 장비를 통하여 박막의 마찰마모 특성에 대하여 조사하였다.

  • PDF

Microstructure and Dielectric Properties of $BaTi_4O_9$ Thin Film for Microwave Devices (고주파 소자용 $BaTi_4O_9$ 박막의 미세구조와 유전특성 연구)

  • Jang, Bo-Yun;Lee, Suk-Jin;Nahm, Sahn;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.125-129
    • /
    • 2004
  • [ $BaTi_4O_9$ ] thin film were grown on $Pt/Ti/SiO_2/Si$ substrate using rf magnetron sputter, and the microstructure and dielectric properties of the thin films were investigated. For the film grown at $350^{\circ}C$ and rapidly thermal annealed at $900^{\circ}C$, the $BaTi_5O_{11}$ Phase was formed. However, the $BaTi_4O_9$ phase was formed when the growing temperature exceeded $450^{\circ}C$ The dielectric constant of the $BaTi_4O_9$ thin film grown at $550^{\circ}C$ and rapidly thermal annealed at $900^{\circ}C$ was about 40 at low frequency range($100kHz{\sim}1MHz$) and 36 at microwave range($1{\sim}10GHz$) which is very close to that of the bulk $BaTi_4O_9$ phase. The dissipation factor was very low, about 0.005 at low frequency as well as microwave range.

  • PDF

Improvement of the Characteristics of PZT Thin Films deposited on LTCC Substrates (LTCC 기판상에 증착한 PZT 박막의 특성 향상에 관한 연구)

  • Hwang, Hyun-Suk;Kang, Hyun-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.245-248
    • /
    • 2012
  • In this paper, the optimized growing conditions of PZT thin films on low temperature co-fired ceramics (LTCC) substrates are studied. The LTCC technology is an emerging one in the fields of mesoscale (from 10 um to several hundred um) sensor and actuator against silicon based technology due to low cost, high yield, easy manufacturing of 3 dimensional structure, etc. The LTCC substrates with thickness of 400 um are fabricated by laminating 100 um green sheets using commercial power (NEG, MLS 22C). The Pt/Ti bottom electrodes are deposited on the LTCC substrates, then the growing conditions of PZT thin films using rf magnetron sputtering method are studied. The growing conditions are tested under various rf power and gas ratio of oxygen to argon. And the crystallization and ingredient of PZT films are analyzed by X-ray diffraction method (XRD) and energy dispersive spectroscopy (EDS). The optimized growing conditions of PZT thin films are rf power of 125W, Ar/O2 gas ratio of 15:5.

Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique (RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 CdCl2 열처리 효과)

  • Choi, Su-Young;Chun, Seung-Ju;Jung, Young-Hun;Lee, Seung-Hun;Bae, Soo-Hyun;Tark, Sung-Ju;Kim, Ji-Hyun;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.497-501
    • /
    • 2011
  • The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the $CdCl_2$ heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a $CdCl_2$ heat treatment was carried out. After the $CdCl_2$ heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 ${\Omega}cm$, and the transmittance in the visible region increased from 64% to 74%.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

Refractive Index Dispersion of Sputter-Deposited Silicon-Rich Silica Thin Films (스퍼터링 방법으로 증착된 실리콘 과잉 실리카 박막의 굴절률 분산)

  • Jin, Byeong-Kyou;Choi, Yong-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.10-15
    • /
    • 2009
  • We have fabricated silicon-rich silica thin films via RF magnetron sputtering using a SiO target. Thickness evolution and microstructure change of such $SiO_x$ (1$SiO_x$ thin films turned out to be mainly responsible for the increase of refractive index.