Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.9.497

Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique  

Choi, Su-Young (Department of Materials Science and Engineering, Korea University)
Chun, Seung-Ju (Department of Materials Science and Engineering, Korea University)
Jung, Young-Hun (Department of Chemical & Biological Engineering, Korea University)
Lee, Seung-Hun (Department of Materials Science and Engineering, Korea University)
Bae, Soo-Hyun (Department of Materials Science and Engineering, Korea University)
Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University)
Kim, Ji-Hyun (Department of Chemical & Biological Engineering, Korea University)
Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.21, no.9, 2011 , pp. 497-501 More about this Journal
Abstract
The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the $CdCl_2$ heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a $CdCl_2$ heat treatment was carried out. After the $CdCl_2$ heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 ${\Omega}cm$, and the transmittance in the visible region increased from 64% to 74%.
Keywords
CdS thin film; RF magnetron sputter; $CdCl_2$ heat treatment; FTO glass;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez- Sandoval, S. Jimenez-Sandoval, G. Torres-Delgado and C. I. Zuniga-Romero, Thin Solid Film, 371, 105 (2000).   DOI   ScienceOn
2 S. A Ringel, A. W. Smith, M. H. MacDougal and A. Rohatgi, J. Appl. Phys., 70(2), 881 (1991).   DOI
3 K. Mitchell, A. L. Fahrenbruch and R. H. Bube, J. Appl. Phys., 48, 829 (1977).   DOI
4 V. Komin, B. Tetali, V. Viswanathan, S. Yu, D. L. Morel and C. S. Ferekides, Thin Solid Films, 431-432, 143 (2003).   DOI   ScienceOn
5 M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino and K. Omura, J. Cryst. Growth, 214-215, 1142 (2000).   DOI   ScienceOn
6 S. Mathew, P. S. Mukerjee and K. P. Vijayakumar, Thin Solid Films, 254, 278 (1995).   DOI   ScienceOn
7 X. Wu, Solar Energy, 77, 803 (2004).   DOI   ScienceOn
8 K. Senthil, D. Mangalaraj, Sa. K. Narayandass and S. Adachi, Mater. Sci. Eng. B, 78, 53 (2000).   DOI   ScienceOn
9 I. M. de la Plaza, G. Gonzalez-Diaz, F. Sanchez-Quesada, M. Rodríguez-Vidal, Thin Solid Films, 120, 31 (1984).   DOI   ScienceOn
10 A. D. Compaan, A. Gupta, J. Drayton, S. -H. Lee and S. Wang, Phys. Status Solidi B, 241, 779 (2004).   DOI   ScienceOn
11 H. El Maliki, J. C. Bernède, S. Marsillac, J. Pinel, X. Castel and J. Pouzet, Appl. Surf. Sci., 205, 65 (2003).   DOI   ScienceOn
12 C. -S. Son, Kor. J. Mater. Res., 21, 202 (2011) (in Korean).   DOI   ScienceOn
13 J. Lee and D. -J. Lee, Thin Solid Films, 515, 6055 (2007).   DOI   ScienceOn
14 Z. Bai, L. Wan, Z. Hou and D. Wang, Phys. Status Solidi C, 8, 628 (2011).   DOI   ScienceOn
15 J. Lee, Appl. Surf. Sci., 252, 1398 (2005).   DOI   ScienceOn
16 L. Escosura, E. Garcia-Camarero, F. Arjona and F. Rueda, Sol. Cell, 11, 211 (1984).   DOI   ScienceOn
17 O. Vigil-Galan, J. Vidal-Larramendi, A. Escamilla-Esquivel, G. Contreras-Puente, F. Cruz-Gandarilla, G. Arriaga-Mejía, M. Chavarria-Castaneda and M. Tufino-Velazq, Phys. Status Solidi, 203, 2018 (2006).   DOI   ScienceOn
18 A. L. Patterson, Phys. Rev., 56(10), 978 (1939).   DOI
19 J. A. Akintunde, J. Mater. Sci. Mater. Electron., 11, 503 (2000).   DOI   ScienceOn
20 M. Altosaar, K. Ernits, J. Krustok, T. Varema, J. Raudoja and E. Mellikov, Thin Solid Films, 480-481, 147 (2005).   DOI   ScienceOn
21 S. Kwon, J. Yi, S. Yoon, J. S. Lee and D. Kim, Current Applied Physics, 9, 1310 (2009).   DOI   ScienceOn
22 R. K. Sharma, K. Jain and A. C. Rastogi, Current Applied Physics, 3, 199 (2003).   DOI   ScienceOn