• 제목/요약/키워드: Reynolds Equation

검색결과 660건 처리시간 0.021초

내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구 (Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder)

  • 배강열;김형범;이상혁
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석 (Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구 (Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor)

  • 황용석;윤웅섭
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.31-39
    • /
    • 1999
  • OFO, FOF 삼중 충돌형 및 FOOF 이중 분리 충돌형 분무연소장의 3차원 수치해석을 통한 연소성능 예측 및 성능설계 방법에 대하여 고찰하였다. 예조건화 압축성 유동 지배방정식과 저 레이놀즈수 $\kappa$-$\varepsilon$ 2 방정식 난류모델을 바탕으로 LU-SGS 기법을 사용하여 시간적분 하였으며 분무과정은 DSF 방법을 사용하여 모사하였다. n-heptane 액적과 공기를 연료와 산화제로 하는 액체 추진기관 내에서의 분무 연소장을 계산하였으며 연소에서의 난류의 영향은 eddy 소산모델을 사용하여 모사하였다. 분무연소장의 특성과 연소성능이 비교되었으며, 계산 결과 FOF 삼중 충돌형 분사기의 성능이 가장 우수한 반면, OFO 삼중 충돌형 분사기의 성능이 가장 저조한 것으로 나타났다. 연소효율에 중대한 영향을 미치는 파라미터로는 운동량비에 따른 초기 분무 액적의 평균직경과 혼합효율임을 확인하였다. 연소효율은 초기 분무 액적의 평균직경과 반비례, 혼합효율에 비례하여 증가되며, 산화제/연료 혼합비도 비례하여 상승하나, 일정 운동량비 이상에서는 감소되는 것으로 나타났다. 각 분사기 형태에서 운동량비에 따른 연소효율의 변화는 혼합효율의 변화와 동일한 경향을 보이며 그 크기는 분무 액적의 평균직경에 밀접한 관계가 있음을 알 수 있었다.

  • PDF

심포일을 갖는 가스 포일 저널 베어링의 성능 예측 (Performance Predictions of Gas Foil Journal Bearing with Shim Foils)

  • 황성호;문창국;이종성;김태호
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.

범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석 (Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps)

  • 김태호;문형욱
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향 (Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness)

  • 김선민;이기돈;김광용
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.903-913
    • /
    • 2011
  • 본 연구에서는 가스터빈 블레이드의 냉각을 위해 사용되는 막냉각 홀을 대상으로 다양한 형상변수들이 막냉각 효율에 미치는 영향을 평가하기 위한 수치적 연구를 수행하였다. 삼차원 압축성 Reynolds-averaged Navier-Stokes 해석을 수행하였으며, 난류모델로는 shear stress transport 모델이 사용되었다. 해석을 통해 홀의 형상, 측면 방향 분사각, 홀의 주기 및 분사율이 막냉각 효율에 미치는 영향이 평가되었다. 해석결과, 원통형홀의 경우 측면 방향 분사각이 존재할 때 월등히 향상된 막냉각 효율을 보여주었으며, 홴형상 홀의 경우 측면 방향 분사각이 $20^{\circ}{\sim}30^{\circ}$일 때 가장 높은 막냉각 효율을 보여주었다. 또한 홀의 주기의 변화에 따른 성능평가 결과 높은 분사율일 때가 낮은 분사율의 경우보다 홀의 주기에 의존하는 경향을 보였다.

판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석 (Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate)

  • 남궁각;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구 (Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact)

  • 김미루;이승준;정재호;이득우
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.

박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구 (Friction Power Loss Reduction for a Marine Diesel Engine Piston)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

세관내 R-22 대체냉매의 응축압력강항에 관한 연구 (The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 오후규;손창효;최영석;김기수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.