• Title/Summary/Keyword: Reversible heat

Search Result 91, Processing Time 0.029 seconds

Electrochemical Properties of Carbon Composites Prepared by Using Graphite Ball-milled in Argon and Air Atmosphere

  • Lee, Kyoung-Muk;Oh, Seh-Min;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1121-1124
    • /
    • 2008
  • A carbon composite was synthesized by mechanical mixing of ball-milled graphite and PVC powders, followed by pyrolysis reaction of PVC. Natural graphite ball milled under atmosphere of argon or air leads to a disordered structure. It appears that the electrochemical lithium intercalation reaction is dependent on the atmosphere in which the graphite is ball milled. The carbon composite obtained using air-milled graphite shows a high reversible capacity and high initial coulombic efficiency compared to argon-milled graphite. This is attributed to the enhanced thermal stability of a disordered structure in the air milled sample. For the one with air-milled graphite, the disordered structure is maintained during heat treatment, while argon-milled graphite is partially crystallized.

Oxide Glasses for Holographic Data Storage

  • Poirier, Gael;Nalin, Marcelo;Ribeiro, Sidney J.L;Messaddeq, Younes
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.86-90
    • /
    • 2007
  • Novel photochromic oxide glasses are presented in this section. These glasses are based on phosphate formers containing both tungsten and antimony atoms. Exposure to visible continuous or pulsed laser beam results in an intense photochromic effect witch is shown to occur in the volume of the glass and results in a broad absorption band in the visible and near infrared. This effect was not identified to be related with a structural change and is assumed to be entirely electronic. A change in the absorption coefficient is observed in function of tungsten content, exposure time and increases with beam power. These glasses have been investigated regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment.

  • PDF

Optical Properties of $Ge_1Se_1Te_2$ Amorphous Chalcogenide Materials ($Ge_1Se_1Te_2$ 비정질 칼코게나이드 물질의 광학적 특성)

  • Choi, Hyuk;Kim, Hyun-Koo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.83-84
    • /
    • 2006
  • For phase transition method, good recording sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, A retention time is very important part for phase transition. In our presentation wall, we chose Ge-Se-Te material to use a Se material which has good optical sensitivity than Sb. A Ge-Se-Te sample was fabricated and Irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light.

  • PDF

Production of Fructose Corn Syrup by Glucose Isomerase (Glucose isomerase 효소를 이용한 이성화당(과당) 생산에 관한 연구)

  • 백성원;유두영
    • Korean Journal of Microbiology
    • /
    • v.18 no.2
    • /
    • pp.59-66
    • /
    • 1980
  • Two strains S-P and S-P-2, both Streptomyces sp., have been isolated and were found to have relatively high specific enzyme activity compared to other organisms reported. The specific activity of the enzyme produced from these two strains were 0.25 and 0.2 international units respectively. The productivity of the enzyme achieved was about 50 IU/l/hr. Glucose isomerase form these strains was found to be stable under the temperature of heat treatment (at $65^{\circ}C$) for fixation of enzyme inside the dell. This organism has an advantage in that it did not require toxic metalic ion for enzyme activity and could utilize xylan in leu of xylose as an inducer. The optimal temperature and pH of enzymatic reaction purpose of using these data for the optimal operation and designing of enzyme reactor system. The reaction mechanism was found to follow the single substrate reversible reaction kinetics. The kinetic constants determined experimentally are : $K_{mf}=0.33M,\;K_{mb}=1.0M,\;V_{mf}=0.88{\mu}mole\;per\;min.,\;V_{mb}= 2.96{\mu}mole\;per\;min.\;and\;K_{eq}=0.74.

  • PDF

Abnormal behaviors in electrical conductions of SOI substrate by thermal annealing temperature (열처리에 따른 SOI 기판에서의 전기전도특성의 이상 거동)

  • Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.126-127
    • /
    • 2008
  • The effects annealing conditions on the electrical conductions of SOI substrate were studied. The reversible change of resistance and carrier concentration in accordance with the annealing temperature were observed for the first time in SOI substrate. The thermal donors due to interstitial oxygen atoms contribute the change of resistance and carrier concentration. Final1y, we show that the furnace annelaing at $500^{\circ}C$ at final heat treatment stage is effective for eliminate the thermal donor effects in SOI substrate.

  • PDF

Isolation and Characterization of an immunomodulatory Protein from Bovine Colostrum

  • Lee, Chong-Kil;Lee, Ho-Jong;Han, Seong-Sun
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.140-146
    • /
    • 1993
  • A colostral protein that augments natural killer (NK) cell activity was isolated from bovine colostrum. This protein, designated matemal immunity enhancing factor (MIEF), increased NK cell-mediated cytotxicity against human tumor targets wheb added to cultures of resting peripheral blood lymphocytes. The NK cell stimulatory activity of the MIEF was demonstrated at the concentrations as low as 0.1-0.01 $\mu$g/ml. Purified MIEF showed an apparent molecular weight of 22,000 in SDS-polyacrylamide gel electrophoresis. The unusual biochemical characteristics of the MIEF distinguish it from other cytokines. The MIEF was soluble at a cold tgemperature, and precipitated by raising the temperature. This themal precipitability was reversible, and dependent on the concentration, pH and ionic strength. Maximal precipitation was observed at neutral pH, and higher ionic strength.

  • PDF

Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction

  • Kim, Tae-Hyun;Sang, Byoung-In;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.499-503
    • /
    • 2018
  • In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

A Study on the Design of the Free-Piston Stirling Engine/Alternator (자유 피스톤 스털링엔진/발전기의 설계 인자 연구)

  • Park, Seongje;Hong, Yongju;Ko, Junseok;Kim, Hyobong;Yeom, Hankil;In, Sehwan;Kang, Insu;Lee, Cheongsu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.

Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries (리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선)

  • Kim, Tae Hun;Gim, Gyeong Rae;Park, Hwandong;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.148-154
    • /
    • 2019
  • Vanadium oxide based materials have been studied as novel negative electrode materials in lithium-ion batteries (LIBs) because of their high specific capacity. In this study, potassium metavanadate ($KVO_3$) was synthesized and its electrochemical properties are evaluated as a negative electrode materials. The aqueous solution of $NH_4VO_3$ is mixed with a stoichiometric amount of KOH. The solution is boiled to remove $NH_3$ gas and dried to obtain a precipitate. The obtained $KVO_3$ powders are heat-treated at 300 and $500^{\circ}C$ for 8 h in air. As the heat treatment temperature increases, the initial reversible capacity decreases, but the cycle performance and Coulombic efficiency are improved slightly. On the contrary, the electrochemical performances of the $KVO_3$ electrodes are greatly improved when a polyacrylic acid (PAA) as binder was used instead of polyvinylidene fluoride (PVDF) and a fluoroethylene carbonate (FEC) was used as electrolyte additive. The initial reversible capacity of the $KVO_3$ is 1169 mAh/g and the Coulombic efficiency is improved to 76.3% with moderate cycle performance. The $KVO_3$ has the potential as a novel high-capacity negative electrode materials.