Browse > Article

Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction  

Kim, Tae-Hyun (Department of Chemical Engineering, Hanyang University)
Sang, Byoung-In (Department of Chemical Engineering, Hanyang University)
Yi, Sung-Chul (Department of Chemical Engineering, Hanyang University)
Publication Information
Abstract
In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.
Keywords
Oxygen reduction reaction; Non-precious metal catalyst; Heteroatom doping; Carbon nanotube; Cobalt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.C.H. Steele and A. Heinzel. Nature 414[6861] (2001) 345-352.   DOI
2 C.M. Sanchez-Sanchez, and A.J. Bard. Anal. Chem. 81[19] (2009) 8094-8100.   DOI
3 Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang. Chem. Soc. Rev. 39[6] (2010) 2184-2202.   DOI
4 G. Wu, K.L. More, C.M. Johnston, and P. Zelenay. Science 332[6028] (2011) 443-447.   DOI
5 C.H. Choi, S.H. Park, and S.I. Woo. Appl. Catal. B Environ. 119-120 [30] (2012) 123-131.   DOI
6 Z. Zhao, M. Li, L. Zhan, L. Dai, and Z. Xia. Adv. Mater. 27[43] (2015) 6834-6840.   DOI
7 J. Liang, Y. Jiao, M. Jaroniec, and S.Z. Qiao. Angew. Chem. Int. Ed. 51[46] (2012) 11496-11500.   DOI
8 C.H. Choi, S.H. Park, and S.I. Woo. ACS Nano 6[8] (2012) 7084-7091.   DOI
9 C.H. Choi, M.W. Chung, Y.J. Jun, and S.I. Woo. RSC Adv. 3[30] (2013) 12417-12422.   DOI
10 J. Shi, X. Zhou, P. Xu, J. Qiao, Z. Chen, and Y. Liu. Electrochim. Acta. 145[1] (2014) 259-269.   DOI
11 K. Hu, L. Tao, D. Liu, J. Huo, and S. Wang. ACS Appl. Mater. Interfaces 8[30] (2016) 19379-19385.   DOI
12 Z. Zhao and Z. Xia. ACS Catal. 6[3] (2016) 1553-1558.   DOI
13 Y. Tang, B.L. Allen, D.R. Kauffman, and A. Star. J. Am. Chem. Soc. 131[37] (2009) 13200-13201.   DOI
14 G. Wu, M. Nelson, S. Ma, H. Meng, G. Cui, and P.K. Shen. Carbon 49[12] (2011) 3972-3982.   DOI
15 Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, and J. Chen. Adv. Mater. 24[11] (2012) 1399-1404.   DOI
16 S. Fu, C. Zhu, H. Li, D. Du, and Y. Lin. J. Mater. Chem. A 3[24] (2015) 12718-12722.   DOI
17 X. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke, H. Sheng, M.T. Swihart, and G. Wu. Nanoscale 7[47] (2015) 20290-20298.   DOI
18 Q. Li, R. Cao, J. Cho, and G. Wu. Adv. Energy Mater. 4[6] (2014) 1301415-1301433.   DOI
19 J. Zhu, K. Li, M. Xiao, C. Liu, Z. Wu, J. Ge, and W. Xing. J. Mater. Chem. A 4[19] (2016) 7422-7429.   DOI
20 Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, M. Srinivasan, Z. Pan, and S. Ramakrishna. J. Mater. Chem. A 5[10] (2017) 4949-4961.   DOI
21 R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, and B.N. Popov. J. Phys. Chem. B 110[4] (2006) 1787-1793.   DOI
22 F. Studt. Catal. Lett. 143[1] (2013) 58-60.   DOI
23 T.H. Kim, C.Y. Jung, R. Bose, and S.C. Yi. Carbon 139 (2018) 656-665.   DOI