• Title/Summary/Keyword: Reverse transcription

Search Result 1,335, Processing Time 0.023 seconds

Effect of amaranth seed extracts on glycemic control in HepG2 cells (HepG2 세포에서 아마란스 종자 에탄올 추출물이 포도당 흡수 조절에 미치는 효과)

  • Park, So Jin;Park, Jong Kun;Hwang, Eunhee
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.603-617
    • /
    • 2021
  • Purpose: This study was carried out to investigate the effect of amaranth seed extracts on glycemic regulation in HepG2 cells. The 80% ethanol extracts of amaranth seeds were used to evaluate α-amylase and α-glucosidase activities, cell viability, glucose uptake and messenger RNA (mRNA) expression levels of acetyl-CoA carboxylase (ACC), glucose transporter (GLUT)-2, GLUT-4, insulin receptor substrate (IRS)-1 and IRS-2. Methods: The samples were prepared and divided into 4 groups, including germinated black amaranth (GBA), black amaranth (BA), germinated yellow amaranth (GYA) and yellow amaranth (YA). Glucose hydrolytic enzyme, α-amylase and α-glucosidase activities were examined using a proper protocol. In addition, cell viability was measured by MTT assay. Glucose uptake in cells was measured using an assay kit. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1 and IRS-2 were measured by reverse transcription polymerase chain reaction. Results: The inhibitory activities of α-amylase and α-glucosidase were highly observed in GBA, followed by BA, GYA and YA. Similar results were observed for glucose. The GBA effect was similar compared to the positive control group. The mRNA expression levels of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 were significantly increased. The potential hypoglycemic effects of amaranth seed extracts were observed due to the increase in glucose metabolic enzyme activity, and glucose uptake was mediated through the upregulation of ACC, GLUT-2, GLUT-4, IRS-1, and IRS-2 expression levels. Conclusion: Our findings suggest that the amaranth seed is a potential candidate to prevent a diabetes. The present study demonstrated the possibility of using amaranth seeds, especially GBA and BA for glycemic control.

Prevalence of hepatitis E virus antibodies in cattle in Burkina Faso associated with swine mixed farming

  • Tialla, Dieudonne;Cisse, Assana;Ouedraogo, Georges Anicet;Hubschen, Judith M.;Tarnagda, Zekiba;Snoeck, Chantal J.
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.33.1-33.10
    • /
    • 2022
  • Background: Endemic circulation of human-specific hepatitis E virus (HEV) genotypes 1 and 2 may occult the importance of sporadic zoonotic HEV transmissions in Africa. Increasing numbers of studies reporting anti-HEV antibodies in cattle and the discovery of infectious HEV in cow milk has raised public health concern, but cattle exposure has seldom been investigated in Africa. Objectives: This study aimed at investigating the role of cows in the epidemiology of HEV in Burkina Faso and farmers habits in terms of dairy product consumption as a prerequisite to estimate the risk of transmission to humans. Methods: Sera from 475 cattle and 192 pigs were screened for the presence of anti-HEV antibodies while HEV RNA in swine stools was detected by reverse transcription polymerase chain reaction. Data on mixed farming, dairy product consumption and selling habits were gathered through questionnaires. Results: The overall seroprevalence in cattle was 5.1% and herd seroprevalence reached 32.4% (11/34). Herd seropositivity was not associated with husbandry practice or presence of rabbits on the farms. However, herd seropositivity was associated with on-site presence of pigs, 80.7% of which had anti-HEV antibodies. The majority of farmers reported to preferentially consume raw milk based dairy products. Conclusions: Concomitant presence of pigs on cattle farms constitutes a risk factor for HEV exposure of cattle. However, the risk of HEV infections associated with raw cow dairy product consumption is currently considered as low.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Utilization of qPCR Technology in Water Treatment (수질분석에 사용되는 qPCR기술)

  • Kim, Won Jae;Hwang, Yunjung;Lee, Minhye;Chung, Minsub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-241
    • /
    • 2022
  • According to the World Water Development Report 2015 released by the United Nations, drinking water is expected to decrease by 40% by 2030. This does not mean that the amount of water decreases, but rather that the water source is contaminated due to environmental pollution. Because microbes are deeply related to water quality, the analysis of microbe is very important for water quality management. While the most common method currently used for microbial analysis is microscopic examination of the shape and feature after cell culture, as the gene analysis technology advances, quantitative polymerase chain reaction (qPCR) can be applied to the microscopic microbiological analysis, and the application method has been studied. Among them, a reverse transcription (RT) step enables the analysis of RNA by RT-PCR. Integrated cell culture (ICC)-qPCR shortens the test time by using it with microbial culture analysis, and viability qPCR can reduce the false positive errors of samples collected from natural water source. Multiplex qPCR for improved throughput, and microfluidic qPCR for analysis with limited amount of sample has been developed In this paper, we introduce the case, principle and development direction of the qPCR method applied to the analysis of microorganisms.

Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells

  • Xu, Xing Yue;Yi, Eun Seob;Kang, Chang Ho;Liu, Ying;Lee, Yeong-Geun;Choi, Han Sol;Jang, Hyun Bin;Huo, Yue;Baek, Nam-In;Yang, Deok Chun;Kim, Yeon-Ju
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.631-641
    • /
    • 2021
  • Background: Main bioactive constituents and pharmacological functions of ripened red ginseng berry (Panax ginseng Meyer) have been frequently reported. Yet, the research gap targeting the beneficial activities of transformed green ginseng berries has not reported elsewhere. Methods: Ginsenosides of new green berry cultivar K-1 (GK-1) were identified by HPLC-QTOF/MS. Ginsenosides bioconversion in GK-1 by bgp1 enzyme was confirmed with HPLC and TLC. Then, mechanisms of GK-1 and β-glucosidase (bgp1) biotransformed GK-1 (BGK-1) were determined by Quantitative Reverse Transcription-Polymerase Chain Reaction and Western blot. Results: GK-1 possesses highest ginsenosides especially ginsenoside-Re amongst seven ginseng cultivars including (Chunpoong, Huangsuk, Kumpoong, K-1, Honkaejong, Gopoong, and Yunpoong). Ginseng root's biomass is not affected with the harvest of GK-1 at 3 weeks after flowering period. Then, Re is bioconverted into a promising pharmaceutical effect of Rg2 via bgp1. According to the results of cell assays, BGK-1 shows decrease of tyrosinase and melanin content in α-melanocyte-stimulating hormone challenged-murine melanoma B16 cells. BGK-1 which is comparatively more effective than GK-1 extract shows significant suppression of the nuclear factor (NF)-κB activation and inflammatory target genes, in LPS-stimulated RAW 264.7 cells. Conclusion: These results reported effective whitening and anti-inflammatory of BGK-1 as compared to GK-1.

Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats

  • Chen, Haolin;Miao Xiaomeng;Xu, Jinge;Pu, Ling;Li, Liang;Han, Yong;Mao, Fengxian;Ma, Youji
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.544-555
    • /
    • 2022
  • Objective: Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods: We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results: We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion: These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.

Patterns of the Occurrence of TYLCV and ToCV with Whitefly on Summer-Cultivated Tomato in Greenhouse in Gwangju, Gyeonggi Province (경기도 광주 여름재배 시설토마토의 가루이 매개 바이러스 TYLCV, ToCV 발생현황)

  • Kwon, Yongnam;Cha, Byeongjin;Kim, Mikyeong
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Patterns of occurrence of tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) with whitefly on summer-cultivated tomato in Gwangju-si, Gyeonggi Province were surveyed using multiplex reverse transcription-polymerase chain reaction in 2020. In addition, distribution of the whiteflies species and their viral transmission rates were investigated throughout the tomato growing season. The infection rates of TYLCV and ToCV increased sharply during harvest, and the single infection rates were 30.9% and 5.0%, respectively, with a mixed infection rate of the two viruses being the highest at 52.2%. Single infection with TYLCV and double infections with TYLCV and ToCV accounted for the majority with 83.1%. Bemisia tabaci were dominant over Trialeurodes vaporariorum in greenhouse grown plants, and all of the investigated B. tabaci biotypes were identified as Mediterranean (MED, formerly known as Q biotype). The transmission rate of TYLCV, detected in every sampled B. tabaci MED population, was 21.4%, and the mixed transmission rate with ToCV was 35.5%. Viruliferous MED whiteflies with ToCV showed a higher rate than that of T. vaporariorum. In the transplant stage, viruliferous rate of both TYLCV and ToCV of B. tabaci was 42.7%; this rate was highest in the harvest stage. In examination of tomato yield, the increase in the mixed infection rate of TYLCV and ToCV led to complete yield loss. When the mixed infection rate increased by 10%, the yield decreased by 405.4 kg/10a.

Genome characterization and mutation analysis of human influenza A virus in Thailand

  • Rattanaburi, Somruthai;Sawaswong, Vorthon;Nimsamer, Pattaraporn;Mayuramart, Oraphan;Sivapornnukul, Pavaret;Khamwut, Ariya;Chanchaem, Prangwalai;Kongnomnan, Kritsada;Suntronwong, Nungruthai;Poovorawan, Yong;Payungporn, Sunchai
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.21.1-21.14
    • /
    • 2022
  • The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in hemagglutinin (HA) and neuraminidase (NA) genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, HA, and NA genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.

Avian leukosis virus subgroup J and reticuloendotheliosis virus coinfection induced TRIM62 regulation of the actin cytoskeleton

  • Li, Ling;Zhuang, Pingping;Cheng, Ziqiang;Yang, Jie;Bi, Jianmin;Wang, Guihua
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.49.1-49.14
    • /
    • 2020
  • Background: Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components. Objectives: The aim of this study was to investigate the function of co-regulation differentially expressed proteins in exosomes on coinfection of ALV-J and REV. Methods: Here, viral replication in CEF cells infected with ALV-J, REV or both was detected by immunofluorescence microscopy. Then, we analyzed the exosomes isolated from supernatants of chicken embryo fibroblast (CEF) cells single infected and coinfected with ALV-J and REV by mass spectrometry. KEGG pathway enrichment analyzed the co-regulation differentially expressed proteins in exosomes. Next, we silenced and overexpressed tripartite motif containing 62 (TRIM62) to evaluate the effects of TRIM62 on viral replication and the expression levels of NCK-association proteins 1 (NCKAP1) and actin-related 2/3 complex subunit 5 (ARPC5) determined by quantitative reverse transcription polymerase chain reaction. Results: The results showed that coinfection of ALV-J and REV promoted the replication of each other. Thirty proteins, including TRIM62, NCK-association proteins 1 (NCKAP1, also known as Nap125), and Arp2/3-5, ARPC5, were identified. NCKAP1 and ARPC5 were involved in the actin cytoskeleton pathway. TRIM62 negatively regulated viral replication and that the inhibition of REV was more significant than that on ALV-J in CEF cells coinfected with TRIM62. In addition, TRIM62 decreased the expression of NCKAP1 and increased the expression of ARPC5 in coinfected CEF cells. Conclusions: Collectively, our results indicated that coinfection with ALV-J and REV competitively promoted each other's replication, the actin cytoskeleton played an important role in the coinfection mechanism, and TRIM62 regulated the actin cytoskeleton.