The purpose of this study is to compare and analyze the perception of retro fashion and new-tro fashion using big data. TEXTOM allowed the collection of big data on the words 'retro fashion' and 'new-tro fashion', which was refined afterwards. As for the data collection period, Jan. 1, 2019 to Nov. 30, 2022 was set. A top 50 list of words were extracted from this data based on appearance frequency. The extracted words were processed through Network centrality analysis and CONCOR analysis using Ucinet 6. The results are as follows. 1) In retro fashion, the appearance frequency of 'style' was the highest, followed by 'sensibility', 'color', 'trend', 'fashion', and 'brand'. These words came up with high TF-IDF values. Network centrality analysis discovered that 'color', 'style', 'trend', 'sensibility', and 'design' had high level of connectivity with other words. CONCOR analysis showed a total of four significant groups; trends, styles, looks, and photos. 2) In new-tro fashion, the appearance frequency of 'retro' was the highest, followed by 'trend', 'generation', 'style', 'brand', and 'fashion'. These words also came up with high TF-IDF values. Network centrality analysis found that 'retro', 'trend', 'generation', and 'brand' had high level of connectivity with other words. CONCOR analysis showed a total of four significant groups; style, brand, clothing, and trend. 3) New-tro fashion is included in retro fashion in that it reproduces the styles of the past. However, it is taken completely differently from generation to generation. Unlike the older generations, millennials actively accept newly created clothes and brands based on the past styles. They perceive it as a fashion that reveals their own unique tastes and tastes.