• Title/Summary/Keyword: Retinal pigment epithelial cells

Search Result 35, Processing Time 0.021 seconds

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells (망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1349-1356
    • /
    • 2017
  • Potassium channel openers (KCOs) produce physiological and pharmacological defense mechanisms against cell injuries caused by oxidative stress of diverse origins. Openings of mitochondrial and plasmalemmal $K^+$ channels are involved in the defense mechanisms. This study tested whether NS 1619, an opener of large-conductance BK channels, has a similar beneficial influence on the pigment epithelial cells of retinas. The human retinal pigment epithelial cell line ARPE-19 was exposed to $H_2O_2$-induced oxidative stress in the absence and presence of NS 1619. The degrees of the cells' injuries were assessed by analyzing the cells' trypan-blue exclusion abilities and TUNEL staining. NS 1619 produced remarkable protections against cell injuries caused by $H_2O_2$. It prevented apoptotic and necrotic cell deaths. The protective effect of NS 1619 was significantly diminished when the cells were treated with NS 1619 in combination with the BK channel-blocker paxilline. NS 1619 significantly ameliorated cellular ATP deprivations in $H_2O_2$-treated cells. It helped mitochondria preserve their functional integrity, which was estimated by their MTT reduction abilities and mitochondrial membrane potential. In conclusion, it was suggested that NS 1619 had a beneficial effect on mitochondria in regards to preserving their functional integrity under oxidative stress, and it produces defense mechanisms against oxidant-induced cell injuries in ARPE-19 cells.

Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1

  • Cheol Park;Hyun Hwangbo;Sung Ok Kim;Jeong Sook Noh;Shin-Hyung Park;Su Hyun Hong;Sang Hoon Hong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.596-605
    • /
    • 2024
  • Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.

Oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into stress granules

  • Hwang, Yeo Eun;Baek, Yu Mi;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.196-201
    • /
    • 2019
  • The Alu element, the most abundant transposable element, is transcribed to Alu RNA. We hypothesized that the PIWI protein regulates the expression of Alu RNA in retinal pigment epithelial (RPE) cells, where accumulated Alu RNA leads to macular degeneration. Alu transcription was induced in RPE cells treated with $H_2O_2$. At an early stage of oxidative stress, PIWIL4 was translocated into the nucleus; however, subsequently it was sequestered into cytoplasmic stress granules, resulting in the accumulation of Alu RNA. An elevated amount of Alu RNA was positively correlated with the disruption of the epithelial features of RPE via induction of mesenchymal transition. Therefore, we suggest that oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into the cytoplasmic stress granules.

Tsg101 Is Necessary for the Establishment and Maintenance of Mouse Retinal Pigment Epithelial Cell Polarity

  • Le, Dai;Lim, Soyeon;Min, Kwang Wook;Park, Joon Woo;Kim, Youjoung;Ha, Taejeong;Moon, Kyeong Hwan;Wagner, Kay-Uwe;Kim, Jin Woo
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.168-178
    • /
    • 2021
  • The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.

A Study on the Differentiation and Acetylcholinesterase Activity of the Developing Rat Retina (발생중인 흰쥐 망막의 분화 및 Acetylcholinesterase 활성에 관한 연구)

  • Kim, Wan-Jong;Choi, Jun-Sub
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.131-144
    • /
    • 1997
  • The present study was carried out to investigate the processes of the ultrastructural differentiation and the acetylcholinesterase (AChE) activities of the developing rat retina. The results are as follows. The retina of fetal rat on the 13th day of gestation showed the early stage of differentiation. Briefly, there appeared dividing chromosomes, the plentiful free ribosomes, and the high ratio of nucleus to cytoplasm. The reaction products by AChE were localized at the membrane of endoplasmic reticulum and on the outer membrane of nucleus. Ultrastructures and AChE activities in the retina of the fetal rats on the 18th day of gestation were similar to those of the prior stages, except the appearence of rough endoplasmic reticulum and Golgi apparatus. According to the ultrastructural observations, the rat retina was still in immature state at birth, but the pigment epithelial cells were fully differentiated, e. g. the increase of melanin granules, the development of mitochondria and Golgi apparatus. The AChE activity was weekly detected. The differentiated retinal layers and the outer segment of photoreceptor cells were observed on the 7th postnatal day. And the pigment epithelium appeared to be fully differentiated. On the 14th postnatal day, rat retina were completely differentiated. In other words, the rat retina was characterized by the prominent outer segments, phagocytosed residues in the pigment epithelium, and the localization of reaction products by AChE in the synapses. In conclusion, the differentiation of rat retina is charaterized by the changes of cell shape, the increase of retinal layers, and the alterations of AChE activities. It seems that rat retina is to be functional from 2 weeks of birth onward, coinciding with the eye opening of the juvenile rats.

  • PDF

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.

Effects of Attachment and Proliferation of Retinal Pigment Epithelial Cells on Silk/PLGA Film (실크/PLGA 필름에서 실크 함량이 망막색소 상피세포의 부착 및 증식 거동에 미치는 영향)

  • Jo, Eun-Hye;Kim, Soo-Jin;Cho, Su-Jin;Lee, Ga-Young;Kim, On-You;Lee, Eun-Yong;Cho, Won-Hyung;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 2011
  • Biomaterials for retinal tissue engineering must demonstrate several critical features for potential utility, including mechanical integrity, biocompatibility, and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. We prepared natural/synthetic hybrid silk/PLGA films using 0, 10, 20, 40, and 80 wt% of silk by a solvent evaporation method. MIT assay was used to confirm the number of cells attached on film at 1, 2, and 3 days, respectively. The morphology of cellular adhesion on films was also confirmed by scanning electron microscope (SEM). RT-PCR was conducted to confrrm mRNA expression of retinal pigment epithelitun (RPE) using RPE65 as a RPEs marker and the expression of cytokeratin were determined by immunofluorescence staining. We confirmed that the silk/PLGA film of 20~40 wt% silk was superior for the adhesion and proliferation of RPEs.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.