Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.6.405

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells  

Song, Na-Ree (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Kim, Seok-Jo (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Kwon, Haw-Young (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Son, Sung-Wook (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Kim, Kyoung-Sook (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Ahn, Hee-Bae (Department of Ophthalmology, College of Medicine, Dong-A University)
Lee, Young-Choon (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Publication Information
BMB Reports / v.44, no.6, 2011 , pp. 405-409 More about this Journal
Abstract
The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.
Keywords
ARPE-19; Ganglioside; Human GM3 synthase; Transcriptional regulation; Valproic acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Cinatl Jr., J., Cinatl, J., Driever, P. H., Kotchetkov, R., Pouckova, P., Kornhuber, B. and Schwabe, D. (1997) Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 8, 958-963.   DOI
2 Choi, H. J., Chung, T. W., Kang, N. Y., Kim, K. S., Lee, Y. C. and Kim, C. H. (2003) Transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during monocytic differentiation of HL-60 cells. FEBS Lett. 555, 204-208.   DOI   ScienceOn
3 Chung, T. W., Choi, H. J., Lee, Y. C. and Kim, C. H. (2005) Molecular mechanism for transcriptional activation of ganglioside GM3 synthase and its function in differentiation of HL-60 cells. Glycobiology 15, 233-244.
4 Kim, S. W., Lee, S. H., Kim, K. S., Kim, C. H., Choo, Y. K. and Lee, Y. C. (2002) Isolation and characterization of the promoter region of the human GM3 synthase gene. Biochim. Biophys. Acta. 1578, 84-89.   DOI   ScienceOn
5 Gupta, S., Campbell, D., Derijard, B. and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393.   DOI   ScienceOn
6 Bhoumik, A. and Ronai, Z. (2008) ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7, 2341-2345.   DOI
7 Morton, S., Davis, R. J. and Cohen, P. (2004) Signaling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett. 572, 177-183.   DOI   ScienceOn
8 Rogawski, M. A. and Loscher, W. (2004) The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553-564.   DOI   ScienceOn
9 Blaheta, R. A., Michaelis, M., Driever, P. H. and Cinatl Jr., J. (2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med. Res. Rev. 25, 383-397.   DOI   ScienceOn
10 Blaheta, R. A. and Cinatl Jr., J. (2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med. Res. Rev. 22, 492-511.   DOI   ScienceOn
11 Hakomori, S. (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10, 16-24.   DOI   ScienceOn
12 Bektas, M. and Spiegel, S. (2004) Glycosphingolipids and cell death. Glycoconjugate J. 20, 39-47.
13 Kwon, H. Y., Kang, N. Y., Dae, H. M., Kim, K. S., Kim, C. H., Do, S. I. and Lee, Y. C. (2008) Valproic acid-mediated transcriptional regulation of human GM3 synthase (hST3Gal V) in SK-N-BE(2)-C human neuroblastoma cells. Acta. Pharmacol. Sin. 29, 999-1005.   DOI   ScienceOn
14 Cinatl Jr., J., Cinatl, J., Scholz, M., Driever, P. H., Henrich, D., Kabickova, H., Vogel, J. U., Doerr, H. W. and Kornhuber, B. (1996) Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs 7, 766-773.   DOI
15 Kwon, H. Y., Dae, H. M., Song, N. R., Kim, K. S., Kim, C. H. and Lee, Y. C. (2009) Valproic acid induces transcriptional activation of human GD3 synthase (hST8Sia I) gene in SK-N-BE(2)-C human neuroblastoma cells. Mol. Cells 27, 113-118.   DOI   ScienceOn