• Title/Summary/Keyword: Retinal mechanism

Search Result 31, Processing Time 0.039 seconds

High Glucose Induces Apoptosis through Caspase-3 Dependent Pathway in Human Retinal Endothelial Cell Line (인간망막 내피세포주에서 고농도 포도당이 caspase-3 경로를 통해 세포자연사 유도)

  • Seo, Eun-Sun;Chae, Soo-Chul;Kho, Eun-Gyeong;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the study is to understand the effects of high Glucose on Human Retinal Endothelial Cells. Retinal endothelial cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 5, 25 and 50 mM Glucose, incubated for 24, 36 and 48 hours in humidified 5 % CO$_2$ incubator at 37$^{\circ}C$. Human Retinal Endothelial Cell Line (HREC) were characterized for morphology with different treatment by phase contrast microscopic analysis. Number of dead and viable cells was counted by trypan blue exclusion and supported by MTT assay. The intracellular Hydrogen peroxide (H$_2$O$_2$), a Reactive Oxygen Species (ROS) generation in high glucose conditions was assessed by FOX II assay and apoptosis by caspase-3 assay. The high glucose treated cells undergoing DNA fragmentation was witnessed by Agarose gel electrophoresis. We found that the cells incubated with 25 and 50 mM glucose containing medium for 48 hours altered the morphology of the cell, induced apoptosis and DNA fragmentation. The dead cell number were high in 25 and 50 mM when compared to the cells incubated with 5 mM glucose for 24, 36, and 48 hours. Also, the H$_2$O$_2$ levels and the activity of caspase-3 were increased in high glucose treated cells. Conclusions/interpretation: Our results demonstrated that elevated glucose induces apoptosis in cultured HREC. The hyperglycemia-induced increase in apoptosis may be dependent on caspase activation. The association between ROS generation and caspase-3 activation on high glucose treated cells is yet to be investigated.

Chemical Coupling between Horizontal Cells in the Catfish Retina

  • Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of GABA and glutamate on the horizontal cells were explored by an intracellular recording method to discern the mechanisms of receptive field formation by chemical coupling in the catfish outer retina. The results suggest that the horizontal cells of the catfish retina might use GABA as their transmitters and that the GABAergic system contributes to the formation of receptive fields of the horizontal cells. GABAC receptors may be involved in a chemical coupling between horizontal cells and concerned with the depolarizing actions by GABA on horizontal cells in the catfish retina. Since the chloride equilibrium potential is more positive than the dark membrane potential in horizontal cells, GABA released from a horizontal cell may depolarize the neighboring horizontal cells. Thus a chemical coupling between horizontal cells may be formed. $GABA_A$ receptors also may be involved in the negative feedback mechanism between photoreceptor and horizontal cell. And glutamate may be involved in connecting positive and negative feedback systems since it potentiated the GABA's actions. Therefore, it is presumed that large receptive fields in the catfish retina are formed not only by electrical coupling but also by chemical coupling between horizontal cells. And information travels laterally by pathways involving both electrical coupling composed of gap junctions and chemical coupling in the retinal network.

  • PDF

Diagnosis of Abusive Head Trauma : Neurosurgical Perspective

  • Kwak, Young Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.3
    • /
    • pp.370-379
    • /
    • 2022
  • Abusive head trauma (AHT) is the most severe form of physical abuse in children. Such injury involves traumatic damage to the head and/or spine of infants and young children. The term AHT was introduced to include a wider range of injury mechanisms, such as intentional direct blow, throw, and even penetrating trauma by perpetuator(s). Currently, it is recommended to replace the former term, shaken baby syndrome, which implicates shaking as the only mechanism, with AHT to include diverse clinical and radiological manifestations. The consequences of AHT cause devastating medical, social and financial burdens on families, communities, and victims. The potential harm of AHT to the developing brain and spinal cord of the victims is tremendous. Many studies have reported that the adverse effects of AHT are various and serious, such as blindness, mental retardation, physical limitation of daily activities and even psychological problems. Therefore, appropriate vigilance for the early recognition and diagnosis of AHT is highly recommended to stop and prevent further injuries. The aim of this review is to summarize the relevant evidence concerning the early recognition and diagnosis of AHT. To recognize this severe type of child abuse early, all health care providers maintain a high index of suspicion and vigilance. Such suspicion can be initiated with careful and thorough history taking and physical examinations. Previously developed clinical prediction rules can be helpful for decision-making regarding starting an investigation when considering meaningful findings. Even the combination of biochemical markers may be useful to predict AHT. For a more confirmative evaluation, neuroradiological imaging is required to find AHT-specific findings. Moreover, timely consultation with ophthalmologists is needed to find a very specific finding, retinal hemorrhage.

Differential Expression Patterns of Crystallin Genes during Ocular Development of Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Young Mee;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul Ji;Park, Jong Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong Ho
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.301-307
    • /
    • 2012
  • Olive flounder Paralichthys olivaceus is one of the most widely cultured fish species in Korea. Although olive flounder receive attention from aquaculture and fisheries and extensive research has been conducted eye morphological change in metamorphosis, but little information was known to molecular mechanism and gene expression of eye development- related genes during the early part of eye formation period. For the reason of eyesight is the most important sense in flounder larvae to search prey, the screening and identification of expressed genes in the eye will provide useful insight into the molecular regulation mechanism of eye development in olive flounder. Through the search of an olive flounder DNA database of expressed sequence tags (EST), we found a partial sequence that was similar to crystallin beta A1 and gamma S. Microscopic observation of retinal formation correspond with the time of expression of the crystallin beta A1 and gamma S gene in the developmental stage, these result suggesting that beta A1 and gamma S play a vital role in the remodeling of the retina during eye development. The expression of crystallin beta A1 and gamma S were obviously strong in eye at all tested developing stage, it is also hypothesized that crystallin acts as a molecular chaperone to prevent protein aggregation during maturation and aging in the eye.

Regulation of HIF-1α stability by lysine methylation

  • Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.245-246
    • /
    • 2016
  • The level and activity of critical regulatory proteins in cells are tightly controlled by several tiers of post-translational modifications. HIF-1α is maintained at low levels under normoxia conditions by the collaboration between PHD proteins and the VHL-containing E3 ubiquitin ligase complex. We recently identified a new physiologically relevant mechanism that regulates HIF-1α stability in the nucleus in response to cellular oxygen levels. This mechanism is based on the collaboration between the SET7/9 methyltransferase and the LSD1 demethylase. SET7/9 adds a methyl group to HIF-1α, which triggers degradation of the protein by the ubiquitin-proteasome system, whereas LSD1 removes the methyl group, leading to stabilization of HIF-1α under hypoxia conditions. In cells from knock-in mice with a mutation preventing HIF-1α methylation (Hif1αKA/KA), HIF-1α levels were increased in both normoxic and hypoxic conditions. Hif1αKA/KA knock-in mice displayed increased hematological parameters, such as red blood cell count and hemoglobin concentration. They also displayed pathological phenotypes; retinal and tumor-associated angiogenesis as well as tumor growth were increased in Hif1αKA/KA knock-in mice. Certain human cancer cells exhibit mutations that cause defects in HIF-1α methylation. In summary, this newly identified methylation-based regulation of HIF-1α stability constitutes another layer of regulation that is independent of previously identified mechanisms.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Protective Effect of Perilla frutescens Extract against Oxidative Stress-Induced Cell Death in a Staurosporine-Differentiated Retinal Ganglion Cell Line (Staurosporine에 의해 분화된 망막신경절세포에서 산화 스트레스 유도 세포사멸에 대한 차조기 추출물의 보호 효능)

  • Lee, Bo Kyung;Choe, Lira;Lee, Ji In;Lee, Doo Yi;Chang, Sun-Young;Kim, So Hee;Jung, Yi-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.161-168
    • /
    • 2017
  • In this study, we examined the effect of Perilla frutescens extract (PFE) on oxidative stress-induced cell death in RGC-5 cell lines. Staurosporine-differentiated RGC-5 (ssdRGC-5) cells obtained by treating RGC-5 cells with $1{\mu}M$ staurosporine were incubated with PFE for 30 min and then exposed to buthionine sulfoximine plus glutamate (B/G) for 20 h. Cell death was detected using lactate dehydrogenase release assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. To investigate the mechanism underlying cell death, we determined caspase-3 activity, level of reactive oxygen species (ROS) formation, and expression levels of cytoplasmic cytochrome c and mitochondrial Bax. Treatment of ssdRGC-5 cells with B/G increased intracellular ROS and induced apoptosis with increasing caspase-3 activity. PFE rescued ssdRGC-5 cells from oxidative stress-induced cell death by inhibiting intracellular ROS production and caspase-3 activation and regulating apoptosis-related proteins such as cytochrome c and Bax. These findings suggest that PFE may have a beneficial neuroprotective effect against oxidative stress-induced apoptotic death in ssdRGC-5 cells.

Evolution of Visual Pigments and Related Molecules

  • Hisatomi, Osamu;Yamamoto, Shintaro;Kobayashi, Yuko;Honkawa, Hanayo;Takahashi, Yusuke;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.41-43
    • /
    • 2002
  • In photoreceptor cells, light activates visual pigments consisting of a chromophore (retinal) and a protein moiety (opsin). Activated visual pigments trigger an enzymatic cascade, called phototransduction cascade, in which more than ten phototransduction proteins are participating. Two types of vertebrate photoreceptor cells, rods and cones, play roles in twilight and daylight vision, respectively. Cones are further classified into several subtypes based on their morphology and spectral sensitivity. Though the diversities of vertebrate photoreceptor cells are crucial for color discrimination and detection of light over a wider range of intensities, the molecular mechanism to characterize the photoreceptor types remains unclear. We investigated the amino acid sequences of about 50 vertebrate opsins, and found that these sequences can be classified into five fundamental subfamilies. Clear relationships were found between these subfamilies and their characteristic spectral sensitivities. In addition to opsins, we studied other phototransduction proteins. The amino acid sequences of phototransduction proteins can be classified into a few subfamilies. Even though their spectral sensitivity is considerably different, cones fundamentally share the phototransduction protein isoforms which are different from those found in rods. It is suggested that the difference in phototransduction proteins between rods and cones is responsible for their sensitivity to light. Isoforms and their selective expression may characterize individual photoreceptor cells, thus providing us with physiological functions such as color vision and daylight/twilight visions.

  • PDF

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.

Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdrl) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and $\mu$-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.