DOI QR코드

DOI QR Code

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei (Institute of Immunology, Taishan Medical College) ;
  • Quan, Juan-Hua (Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University) ;
  • Gao, Fei-Fei (Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine) ;
  • Ismail, Hassan Ahmed Hassan Ahmed (Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine) ;
  • Lee, Young-Ha (Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine) ;
  • Cha, Guang-Ho (Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine)
  • Received : 2017.06.20
  • Accepted : 2018.03.20
  • Published : 2018.04.30

Abstract

Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Keywords

References

  1. Vallochi AL, Nakamura MV, Schlesinger D, Martins MC, Silveira C, Belfort R Jr, Rizzo LV. Ocular toxoplasmosis: more than just what meets the eye. Scand J Immunol 2002; 55: 324-328. https://doi.org/10.1046/j.1365-3083.2002.01052.x
  2. Rao NA, Font RL. Toxoplasmic retinochoroiditis: electron-microscopic and immunofluorescence studies of formalin-fixed tissue. Arch Ophthalmol 1977; 95: 273-277. https://doi.org/10.1001/archopht.1977.04450020074012
  3. Willermain F, Caspers-Velu L, Nowak B, Stordeur P, Mosselmans R, Salmon I, Velu T, Bruyns C. Retinal pigment epithelial cells phagocytosis of T lymphocytes: possible implication in the immune privilege of the eye. Br J Ophthalmol 2002; 86: 1417-1421. https://doi.org/10.1136/bjo.86.12.1417
  4. Sibley LD. Toxoplasma gondii: perfecting an intracellular life style. Traffic 2003; 4: 581-586. https://doi.org/10.1034/j.1600-0854.2003.00117.x
  5. Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 2008; 6: 79-88. https://doi.org/10.1038/nrmicro1800
  6. Zenner L, Foulet A, Caudrelier Y, Darcy F, Gosselin B, Capron A, Cesbron-Delauw MF. Infection with Toxoplasma gondii RH and Prugniaud strains in mice, rats and nude rats: kinetics of infection in blood and tissues related to pathology in acute and chronic infection. Pathol Res Pract 1999; 195: 475-485. https://doi.org/10.1016/S0344-0338(99)80051-X
  7. Kotze AC, McClure SJ. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int J Parasitol 2001; 31: 1563-1571. https://doi.org/10.1016/S0020-7519(01)00303-4
  8. Kim L, Denkers EY. Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. J Cell Sci 2006; 119: 2119-2126. https://doi.org/10.1242/jcs.02934
  9. Wang Y, Weiss LM, Orlofsky A. Coordinate control of host centrosome position, organelle distribution, and migratory response by Toxoplasma gondii via host mTORC2. J BiolChem 2010; 285: 15611-15618.
  10. Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 2003; 102: 672-681. https://doi.org/10.1182/blood-2002-10-3232
  11. Molestina RE, Payne TM, Coppens I, Sinai AP. Activation of NFkappa B by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated Ikappa B to the parasitophorous vacuole membrane. J Cell Sci 2003; 116: 4359-4371. https://doi.org/10.1242/jcs.00683
  12. Brognard J, Scierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007; 25: 917-931. https://doi.org/10.1016/j.molcel.2007.02.017
  13. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29-39. https://doi.org/10.1016/S0092-8674(00)81780-8
  14. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369: 1-15. https://doi.org/10.1042/bj20021469
  15. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG. Direct identification of PTEN phosphorylation sites. FEBS Lett 2002; 528: 145-153. https://doi.org/10.1016/S0014-5793(02)03274-X
  16. Neri P, Mercanti L, Mariotti C, Salvolini S, Giovannini A. Longterm control of choroidal neovascularization in quiescent congenital toxoplasma retinochoroiditis with photodynamic therapy: 4-year results. Int Ophthalmol 2010; 30: 51-56. https://doi.org/10.1007/s10792-008-9291-6
  17. Wang H, Hartnett ME. Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis 2016; 22: 189-202.
  18. Balaratnasingam C, Dhrami-Gavazi E, McCann JT, Ghadiali Q, Freund KB. Aflibercept: a review of its use in the treatment of choroidal neovascularization due to age-related macular degeneration. Clin Ophthalmol 2015; 9: 2355-2371.
  19. Zhou W, Quan JH, Lee YH, Shin DW, Cha GH. Toxoplasma gondii proliferation require down-regulation of host Nox4 expression via activation of PI3 Kinase/Akt signaling pathway. PLoS One 2013; 8: e66306 https://doi.org/10.1371/journal.pone.0066306
  20. Talalay P. Chemo protection against cancer by induction of phase 2 enzymes. Biofactors 2000; 12: 5-11. https://doi.org/10.1002/biof.5520120102
  21. Lin YC, Huang GD, Hsieh CW, Wung BS. The glutathionylation of p65 modulates NF-${\kappa}B$ activity in 15-deoxy-${\Delta}12$,14-prostaglandin Jtreated endothelial cells. Free Radic Bio Med 2012; 52: 1844-1853. https://doi.org/10.1016/j.freeradbiomed.2012.02.028
  22. Hayes JD, Strange RC. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res 1995; 22: 193-207. https://doi.org/10.3109/10715769509147539
  23. Cheng JZ, Singhal SS, Saini M, Singhal J, Piper JT, Van Kuijk FJ, Zimniak P, Awasthi YC, Awasthi S. Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 1999; 372: 29-36. https://doi.org/10.1006/abbi.1999.1479
  24. Wang Z, He W, Yang G, Wang J, Wang Z, Nesland JM, Holm R, Suo Z. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma. BMC Cancer 2010; 10: 352. https://doi.org/10.1186/1471-2407-10-352
  25. Hirano I, Nakamura S, Yokota D, Ono T, Shigeno K, Fujisawa S, Shinjo K, Ohnishi K. Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms. J BiolChem 2009; 284: 22155-22165.
  26. Ohta Y, Endo Y, Tanaka M, Shimizu J, Oda M, Hayashi Y, Watanabe Y, Sasaki T. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996; 2: 1411-1416.
  27. Tong JP, Lam DS, Chan WM, Choy KW, Chan KP, Pang CP. Effects of triamcinolone on the expression of VEGF and PEDF in human retinal pigment epithelial and human umbilical vein endothelial cells. Mol Vis 2006; 12: 1490-1495.
  28. Dhakshinamoorthy S, Porter AG. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem 2004; 279: 20096-20107. https://doi.org/10.1074/jbc.M312492200
  29. Benevento JD, Jager RD, Noble AG, Latkany P, Mieler WF, Sautter M, Meyers S, Mets M, Grassi MA, Rabiah P, Boyer K, Swisher C, McLeod R. Toxoplasmosis-associated neovascular lesions treated successfully with ranibizumab and antiparasitic therapy. Arch Ophthalmol 2008; 126: 1152-1156. https://doi.org/10.1001/archopht.126.8.1152
  30. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 2000; 129: 77-97. https://doi.org/10.1016/S0009-2797(00)00199-X
  31. Quan JH, Cha GH, Zhou W, Chu JQ, Nishikawa Y, Lee YH. Involvement of PI3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis. Exp Parasitol 2013; 133: 462-471. https://doi.org/10.1016/j.exppara.2013.01.005
  32. Wang Y, Weiss LM, Orlofsky A. Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycindependent host cell growth despite impaired signaling to S6K1 and 4E-BP1. Cell Microbiol 2009; 11: 983-1000. https://doi.org/10.1111/j.1462-5822.2009.01305.x
  33. Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC, Brown JH. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res 2010; 107: 476-484. https://doi.org/10.1161/CIRCRESAHA.109.215020
  34. Patterson SJ, Han JM, Garcia R, Assi K, Gao T, O'Neill A, Newton AC, Levings MK. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol 2011; 186: 5533-5537. https://doi.org/10.4049/jimmunol.1002126
  35. Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 2003; 23: 908-915. https://doi.org/10.1128/MCB.23.3.908-915.2003
  36. Pallares J, Llobet D, Santacana M, Eritja N, Velasco A, Cuevas D, Lopez S, Palomar-Asenjo V, Yeramian A, Dolcet X, Matias-Guiu X. CK2beta is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation. Am J Pathol 2009; 174: 287-296. https://doi.org/10.2353/ajpath.2009.080552
  37. Rasmussen H, Chu KW, Campochiaro P, Gehlbach PL, Haller JA, Handa JT, Nguyen QD, Sung JU. Clinical protocol. An openlabel, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 2001; 12: 2029-2032.
  38. Lee H, Chung H, Arnouk H, Lamoke F, Hunt RC, Hrushesky WJ, Wood PA, Lee SH, Jahng WJ. Cleavage of the retinal pigment epithelium-specific protein RPE65 under oxidative stress. Int J Biol Macromol 2010; 47: 104-108. https://doi.org/10.1016/j.ijbiomac.2010.05.014
  39. Wang L, Chen Y, Sternberg P, Cai J. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest Ophthalmol Vis Sci 2008; 49:1671-1678. https://doi.org/10.1167/iovs.07-1099
  40. Kim SK, Abdelmegeed MA, Novak RF. Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther 2006; 316: 1255-1261.
  41. Nelson MM, Jones AR, Carmen JC, Sinai AP, Burchmore R, Wastling JM. Modulation of the host cell proteome by the Intracellular Apicomplexan parasite Toxoplasma gondii. Infect Immun 2008; 76: 828-844. https://doi.org/10.1128/IAI.01115-07

Cited by

  1. Dipenyleneiodonium Induces Growth Inhibition of Toxoplasma gondii through ROS Induction in ARPE-19 Cells vol.57, pp.2, 2018, https://doi.org/10.3347/kjp.2019.57.2.83
  2. Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii vol.4, pp.3, 2018, https://doi.org/10.1128/msphere.00292-19
  3. Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway vol.20, pp.1, 2020, https://doi.org/10.1186/s12886-020-01400-5
  4. Upregulation of PEDF Predicts a Poor Prognosis and Promotes Esophageal Squamous Cell Carcinoma Progression by Modulating the MAPK/ERK Signaling Pathway vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.625612
  5. Modulation of the mTOR pathway plays a central role in dendritic cell functions after Echinococcus granulosus antigen recognition vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-96435-z