인간망막 내피세포주에서 고농도 포도당이 caspase-3 경로를 통해 세포자연사 유도

High Glucose Induces Apoptosis through Caspase-3 Dependent Pathway in Human Retinal Endothelial Cell Line

  • Seo, Eun-Sun (Department of Biology, Chonnam National University) ;
  • Chae, Soo-Chul (Department of Biology, Chonnam National University) ;
  • Kho, Eun-Gyeong (Department of Biology, Chonnam National University) ;
  • Lee, Jong-Bin (Department of Biology, Chonnam National University)
  • 발행 : 2009.02.28

초록

당뇨망막병증은 서구에서 성인들의 실명을 일으키는 원인이다. 당뇨병이 있을 때 고혈당증은 여러 세포 형태에서 세포자연사를 유도하지만 그 기작은 명확하게 밝혀지지 않았다. 본 연구의 목적은 인간망막 내피세포에서 고혈당 포도당이 세포자연사에 미치는 영향에 대하여 알아보았다. 망막 내피세포는 5, 25, 50 mM 포도당이 포함된 IMDM배지에서 37$^{\circ}C$, 5% CO$_2$조정된 항온기에서 24, 36, 48시간 동안 배양하였다. 여러 농도의 포도당을 처리한 인간망막 내피세포 형태의 특징은 위상차현미경으로 관찰하였고, 세포의 생존은 MTT assay를 통해 산정하였다. 고농도 포도당에서 활성산소종인 세포 내의 H$_2$O$_2$는 FOX II assay와 caspase-3 assay에 의한 세포자연사를 통해 측정하였다. 고농도의 포도당을 처리한 세포에서의 DNA분절화는 아가펄스 겔 전기영동을 통해 관찰하였다. 25, 50mM 포도당을 포함한 배양액에 48시간 동안 배양한 세포는 형태가 변하고. 세포자연사에 의해 유도된 DNA 분절화를 관찰 할 수 있었다. 25, 50 mM의 포도당에서 배양한 세포와 5 mM 포도당에서 24, 36, 48 시간 배양한 세포와 비교했을 때 25, 50 mM에서 죽은 세포의 수가 더 많았다. 또한 과산화수소의 양과 caspase-3의 활성은 고농도 포도당을 처리한 세포에서 증가하였다. 결론적으로 고농도 포도당이 배양된 인간망막 내피세포에서 세포자연사를 유도하는 것을 증명하였고, 고혈당증의 유도로 caspase 활성에 의존적인 세포자연사는 증가하였다. 고농도의 포도당이 처리된 세포에서 활성산소종 유발과 caspase-3 활성간의 관계는 아직 조사되지않았다.

Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the study is to understand the effects of high Glucose on Human Retinal Endothelial Cells. Retinal endothelial cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 5, 25 and 50 mM Glucose, incubated for 24, 36 and 48 hours in humidified 5 % CO$_2$ incubator at 37$^{\circ}C$. Human Retinal Endothelial Cell Line (HREC) were characterized for morphology with different treatment by phase contrast microscopic analysis. Number of dead and viable cells was counted by trypan blue exclusion and supported by MTT assay. The intracellular Hydrogen peroxide (H$_2$O$_2$), a Reactive Oxygen Species (ROS) generation in high glucose conditions was assessed by FOX II assay and apoptosis by caspase-3 assay. The high glucose treated cells undergoing DNA fragmentation was witnessed by Agarose gel electrophoresis. We found that the cells incubated with 25 and 50 mM glucose containing medium for 48 hours altered the morphology of the cell, induced apoptosis and DNA fragmentation. The dead cell number were high in 25 and 50 mM when compared to the cells incubated with 5 mM glucose for 24, 36, and 48 hours. Also, the H$_2$O$_2$ levels and the activity of caspase-3 were increased in high glucose treated cells. Conclusions/interpretation: Our results demonstrated that elevated glucose induces apoptosis in cultured HREC. The hyperglycemia-induced increase in apoptosis may be dependent on caspase activation. The association between ROS generation and caspase-3 activation on high glucose treated cells is yet to be investigated.

키워드

참고문헌

  1. Abu El, L Dralands, L Missotten, IA Jadaan and K Geboes. 2004. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest. Ophthamol Visual Sci. 45:2760-2766 https://doi.org/10.1167/iovs.03-1392
  2. Amar KP, B Kumar. UK Madhusoodanan, N Sudhakar and J Jose. 2002. Determination of absolute hydrogen peroxide concentration by spectrophotometric method. Current Science 83:10
  3. Barber AJ, DA Antonetti, TS Kern. CE Reiter, RS Soans, JK Krady, SW Levison. TW Gardner and SK Bronson. 2005. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest. Ophthamol Visual Sci. 46:2210-2218 https://doi.org/10.1167/iovs.04-1340
  4. Baynes JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405-412 https://doi.org/10.2337/diabetes.40.4.405
  5. Bhat NR and P Zhang. 1999. Hydrogen peroxide activation of multiple mitogen-activated protein kinase in an oligodendrocyte cell line : role of extracellular signal-regulated kinase in hydrogen peroxide induced cell death. J. Neurochem. 72:112-119 https://doi.org/10.1046/j.1471-4159.1999.0720112.x
  6. Brownlee M. 2001. Biochemistry and molecular ceII biology of diabetic complications. Nature 414:813-820 https://doi.org/10.1038/414813a
  7. Buttke TM and P A Sandstrom. 1994. Oxidative stress as a mediator of apoptosis. lmmunol. Today 15:7-10 https://doi.org/10.1016/0167-5699(94)90018-3
  8. Cutler RG, J Plummer, K Chowdhury and C Heward. 1991. Oxidative stress : from basic Jesearch to clinical application. Am. J. Med. 91:S31-S38
  9. David AA, H Steven, V Mira, RJ Martin and YM Muhamed. 2003. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. The FASEBJ 17:908-910
  10. Feng HM, LH Shing, LS Chiau, HJ Por and LSY Shoei. 2000 Glucose-induced apoptosis in Human endothelial cells is mediated by sequential activations of c-Jun $NH_2$-terminal kinase and Caspase-3. Circulation 101:2618-2624
  11. Giuglano D, G Paolisso and A Ceriello. 1996. Oxidative stress anddiabetic vascular complications. Diabetes Care 19:257-267 https://doi.org/10.2337/diacare.19.3.257
  12. Jaffar NZ, TS Jarad, LK Eddie and WP Simon. 1996. Low density lipoprotein is the major carrier of lipid hydroperoxides in Plasma: Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem. J. 313:781-786
  13. Jiandi Z, RC Mary. HA Yusuf and OM Lina. 1999. Inhibition of caspases inhibits the release of apoptotic bodies : bcl-2 inhibits the initiation of formation of apoptotic bodies in chemotherapeutic agent-induced apoptosis. J. Cell Biol. 145:99-108 https://doi.org/10.1083/jcb.145.1.99
  14. King GL. M Kunisaki, Y Nishio, T Inoguchi, T Shiba and P Xia. 1996. Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 45:105-108 https://doi.org/10.2337/diabetes.45.1.105
  15. Martin PM, P Roon, TK Van, V Ganapathy and SB Smith. 2004. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest. Ophthalmol Visual Sci. 45:3330-3336 https://doi.org/10.1167/iovs.04-0247
  16. Mohr S, X Xi, J Tang and TS Kern. 2002. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51:1172-1179 https://doi.org/10.2337/diabetes.51.4.1172
  17. Nicholson DW. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37-43 https://doi.org/10.1038/376037a0
  18. Rassam SM, V Patel and EM Kohner. 1995. The effect of experimental hypertension on retinal vascular autoregulation in humans : a mechanism for the progression of diabetic retinopathy. Exp. Physiol. 80:53-68
  19. Santiago AR, AJ Cristovao, PF Santos, CM Carvalho and AF Ambrosio. 2007. High glucose induces caspase-independent cell death in retinal neural cells. Neurobiology of Disease 25 :464-472 https://doi.org/10.1016/j.nbd.2006.10.023
  20. Sato Y, N Hotta, N Sakamoto, S Matsuoka, N Ohishi and K Yagi. 1979. Lipid peroxide level in the plasma of diabetic patients. Biochem. Med. and Met. Biol. 21:104-107
  21. Stanley MR. 1991. Experimental techniques in bacterial genetics. Analytical Biochemistry 192:254
  22. Vaux DL and A Strasser. 1996. The molecular biology of apoptosis. Proc. Natl. Acad. Sci. 93:2239-2244 https://doi.org/10.1073/pnas.93.6.2239
  23. Wang X, JL Martindale, Y Liu and NJ Holbrook. 1998. The cellular response to oxidative stress : influences of mitogenactivated protein kinase signaling pathways on cell survival. Biochem. J. 333:291-300
  24. Yasuo I, C David and R Neil. 2002. Hyperglycemia-induced apoptosis in Human Umbilical vein endothelial cel s : inhibition by the AMP-activated protein kinase activation. Diabetes 51:159-166 https://doi.org/10.2337/diabetes.51.1.159