• Title/Summary/Keyword: Retinal image

Search Result 69, Processing Time 0.028 seconds

Development of Hand-held OCT probe for Ophthalmic Imaging (안구 영상을 위한 OCT용 손잡이 형 프로브의 개발)

  • Cho, Nam-Hyun;Jung, Woong-Gyu;Jung, Un-Sang;Sephen, A.Boppart;Shim, Jae-Hoon;Kim, Jee-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • We have developed a hand-held probe for an ophthalmic OCT system. The hand-held probe for imaging was designed to be compact and portable. The cornea and retinal images were acquired by replacing the objective lens at the front of the probe. To verify the performance of the hand-held OCT probe, we acquired two dimensional OCT image of the rat eye in vivo and reconstructed three dimensional rat eye rendering images. In vivo 3D OCT images were showed distinct structural information in the posterior and anterior chamber with minimal motion artifacts. Thereby, OCT imaging speed is suitable for an dynamic in vivo experiment.

Rhabdomere Formation in Late Pupal Stage of Drosophila melanogaster; Observation Using High-Pressure Freezing and Freeze-Substitution, and High-Voltage Electron Microscopy (초고압 동결장비와 초고압투과전자현미경을 이용한 초파리의 감간분체 형성과정의 구조분석)

  • Mun, Ji-Young;Arii, Tatsuo;Hama, Kiyoshi;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.37 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • The late pupal stage of Drosophila melanogaster occurs immediately before the completion of retinal development, during which the rhabdomere rapidly forms. In this period, the photoreceptor cells were fixed and dehydrated using a high-pressure freezer (HPF) and freeze substitution (FS) technique, which is the most effective in preserving the cell structures, and observed using high-voltage electron microscopy (HVEM) at 1000 KV. The rhabdomere was classified structurally into three types of formation patterns using stereo-tiling image of thick sections. Initially, hexagonal arrays of rhabdomere existed in different angles. In addition, small pieces of rhabdomere could be observed in the cytoplasm of the photoreceptor rolls, which were visible during the profess of rhabdomere formation. In addition, multiple layers of rhabdomere strings were observed. We observed there are at least three types of vesicles related to rhabdomere formation in photoreceptor cells. In addition, it was found that these vesicles initiate the formation of the rhabdomeres during the pupal stage. Collectively, these data suggest that rhabdomeres were mainly formed through vesicles, and that parts of the rhabdomere formed first and then gathered and formed rhabdomeres in the late pupal stage.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Development of a vestibulo-ocular reflex measurement system for the study of cybersickness (사이버멀미 경감 연구를 위한 전정안구반사 측정 시스템 개발)

  • Jeon, Hyeonjin;Chang, EunHee;Wendimagegn, Tariku Weldtsadik;Park, Chan Hyun;Jeong, Ji Woon;Kim, Hyun Taek
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.27-38
    • /
    • 2015
  • Vestibulo-ocular reflex (VOR) is a compensatory response of the extraocular muscles generated by vestibular signals to stabilize images on the retina during head/body movements. It has been reported that mismatches between retinal and vestibular information, which cause motion sickness or cybersickness, modify VOR. To investigate the characteristic changes of VOR in subjects experiencing cybersickness, we developed a low-cost, multi-purpose VOR measurement system using LabVIEW and Arduino. To test the applicability of the system, we performed two experiments. In Experiment 1, horizontal and vertical VORs of four participants were measured using a vestibular autorotation task. In Experiment 2, eight participants were exposed to a virtual navigation to measure changes of VORs as an index of cybersickness. We observed significantly greater head rotations and eye movements while the participants were exposed to the virtual navigation than to a static image. The results suggest that the present system can help understand the psychophysiological mechanisms of cybersickness symptoms.

Screen Disparity and Size Perception Function of Various 3D Stimuli (양안시차에 따른 다양한 3D 자극의 크기지각 예측함수 개발)

  • Park, JongJin;Li, Hyung-Chul O.;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.66-76
    • /
    • 2013
  • Although there has been much advance in the development of 3D displays of various purpose, 3D contents are not yet so used as expected in those displays. One well-known obstacle in the enjoyment of 3D contents is visual fatigue, but another major issue is image distortion of 3D contents. In the previous research, Shin, Li, & Kim (2012) reported systematic linear relationship between screen disparity and size perception of a simple object whose retinal size was constant across different disparities. In this research, we intended to generalize the previous finding by using various 3D stimuli in the test of the relationship between screen disparity and size perception of those stimuli. Consistent with previous findings, our data indicated that size perception linearly changes as a function of screen disparity and the linearity was observed in all stimuli types we used in this research. We described the empirical relationship between screen disparity and size perception in the form of prediction function for size perception in which visual angle is the predictor. This function will be very useful in the creation of 3D contents as one can make reasonable predictions on the to-be-perceived size of an object being filmed using screen disparity of their camera setting.

Change of Contrast Sensitivity in Peripheral Vision Following Eccentric Viewing Training (중심외주시 훈련 후 주변시야에서의 대비감도 변화)

  • Seo, Jae-Myoung;Lee, Ki-Young;Lim, Yong-Moo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • Purpose: This study was to investigate the functional improvement in peripheral vision following eccentric viewing training. Methods: 14 subjects with normal vision took a part with their right eye, peripheral retinal which is $20^{\circ}$ lateral area from the fovea was examined for contrast sensitivity(CS). Eccentric viewing training was performed for 21days with an hour image viewing and examination was repeated. Results: The critical durations for 0.7 cpd were increased 2.67(467 ms) for pre-eccentric viewing training to 2.79(616 ms) for post-eccentric viewing training (p>0.05). The critical durations for 3.0 cpd were also increased 2.53(341 ms) for pre-eccentric viewing training to 3.04(1102 ms) for post-eccentric viewing training (p>0.05). Conclusions: It is recommended to use higher spatial frequency with higher CS for eccentric viewing training and to train more frequently for a short time. Moreover, the study on Korean standardizing of the visual rehabilitation for low vision based on the etiology is sorely required.

A Study on the Methodology of Early Diagnosis of Dementia Based on AI (Artificial Intelligence) (인공지능(AI) 기반 치매 조기진단 방법론에 관한 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.37-49
    • /
    • 2021
  • The number of dementia patients in Korea is estimated to be over 800,000, and the severity of dementia is becoming a social problem. However, no treatment or drug has yet been developed to cure dementia worldwide. The number of dementia patients is expected to increase further due to the rapid aging of the population. Currently, early detection of dementia and delaying the course of dementia symptoms is the best alternative. This study presented a methodology for early diagnosis of dementia by measuring and analyzing amyloid plaques. This vital protein can most clearly and early diagnose dementia in the retina through AI-based image analysis. We performed binary classification and multi-classification learning based on CNN on retina data. We also developed a deep learning algorithm that can diagnose dementia early based on pre-processed retinal data. Accuracy and recall of the deep learning model were verified, and as a result of the verification, and derived results that satisfy both recall and accuracy. In the future, we plan to continue the study based on clinical data of actual dementia patients, and the results of this study are expected to solve the dementia problem.

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

The Usefulness of F-18-FDG PET and The Effect of Scan Protocol in Diagnosis of Intraocular Tumors (안구 내 종양의 진단에 있어서 F-18-FDG PET의 유용성과 검사 방법의 영향)

  • Lee, Jae-Soung;Yang, Won-Il;Kim, Byoung-Il;Choi, Chang-Woon;Lim, Sang-Moo;Lee, Tae-Won;Sin, Min-Kyeung;Hong, Soung-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 1999
  • Purpose : It is important to differentiate malignant from benign lesions of intraocular masses in choosing therapeutic plan. Biopsy of intraocular tumor is not recommended due to the risk of visual damage. We evaluated the usefulness of F-18-FDG PET imaging in diagnosing intraocular neoplasms. Materials and Methods: F-18-FDG PET scan was performed in 13 patients (15 lesions) suspected to have malignant intraocular tumors. There were 3 benign lesions (retinal detachment, choroidal effusion and hemorrhage) and 10 patients with 12 malignant lesions (3 melanomas, 7 retinoblastomas and 2 metastatic cancers). Regional eye images ($256{\times}256$ and $128{\times}128$ matrices) were obtained with or without attenuation correction. Whole body scan was also performed in eight patients (3 benign and 6 malignant lesions). Results: All malignant lesions were visualized while all benign lesions were not visualized. The mean peak standardized uptake value (SUV) of malignant lesions was $2.64{\pm}0.57g/ml$. There was no correlations between peak SUV and tumor volume. Two large malignant lesions ($> 1000 mm^3$) showed hot uptake on whole body scan. But two medium-sized lesions ($100-1000mm^3$) looked faint and two small ($<100mm^3$) lesions were not visualized. The images reconstructed with $256{\times}256$ matrix showed lesions more clearly than those with $128{\times}128$ matrix Conclusion: F-18-FDG PET scan is highly sensitivity in detecting malignant intraocular tumor For the evaluation of small-sized intraocular lesions, whole body scan is not appropriate because of low sensitivity. A regional scan with sufficient acquisition time is recommended for that purpose. Image reconstruction in matrix size of $256{\times}256$ produced clearer images than the ones in $128{\times}128$, but it does not affect the diagnostic sensitivity.

  • PDF