• Title/Summary/Keyword: Retention rate

Search Result 1,071, Processing Time 0.033 seconds

Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors (고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작)

  • Son, Seon Gyu;Kim, Seo Jin;Shin, Junho;Ryu, Taegon;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.403-408
    • /
    • 2021
  • In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 µF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.

Feeding ratio affects growth, body composition, and blood chemistry of mandarin fish (Siniperca scherzeri) in recirculating aquaculture system

  • Kim, Yi-Oh;Oh, Sung-Yong;Lee, Who-Seung
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.219-227
    • /
    • 2021
  • The effects of various feeding ratios on the growth, body composition, and blood chemistry of the juvenile mandarin fish Siniperca scherzeri (initial body weight 9.6 g) were examined in recirculating freshwater system equipped with 21, 300 L tanks at 20 fish per tank. The triplicate groups of seven feeding ratios treatments were prepared: 100% (control), 95%, 90%, 85%, 80%, 75%, and 70% of satiation. The feed amount of control group was determined by supplying with apparent satiation and then the feed amounts of the other six feeding groups were determined based on the feed amount of the control group. Fish were hand-fed with test diet (55.4% crude protein) for 10 weeks. Weight gain (WG) and specific growth rate of fish fed to 100% satiation were not significantly (p > 0.05) different from those of fish fed to ≥ 80% satiation but were significantly higher than those of fish fed to 75% and 70% satiation. Feed efficiency, protein efficiency ratio, and protein retention of 100% satiation were not significantly different from those of 95% and 90% satiation but were significantly (p <0.05) lower than ≤ 85% satiation. Condition factor, hepatosomatic index, and coefficient variation were not significantly (p > 0.05) affected by feeding ratio. Whole body composition and contents of hematocrit, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, glucose, total protein, and high-density lipoprotein cholesterol in blood serum were not significantly (p > 0.05) affected by the feeding ratio; however, content of total cholesterol tended to decrease as the feeding ratio decreased. Using broken-line analysis of WG, it was suggested that the optimum feeding ratio of juvenile mandarin fish, ranging from 9.0 g to 37.0 g, appeared to be 87.7% of satiation without growth inhibition.

Effects of trunk Muscles Endurance, Hip Joint Muscular Strength, and Pelvic Alignment on Mild Low Back Pain

  • Kim, Wondeuk;Seo, Miryea;Park, Dongchun;Shin, Doochul
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.156-160
    • /
    • 2021
  • Objective: Low back pain easily becomes chronic and has a high recurrence rate. Therefore, it is most important to prevent chronicity and reduce the risk of recurrence in the early stages of back pain or at the stage with mild pain. Therefore, this study was conducted to compare hip joint muscle strength, trunk muscle endurance, and pelvic alignment between subjects with mild low back pain and subjects without back pain. Design: Crossed-sectional study Methods: The study was conducted by recruiting 30 students in their twenties who are enrolled in K University in Gyeongsangnam-do, and classifying them into 15 patients with mild back pain and 15 patients with normal. The subjects who participated in the experiment were measured for hip flexor and extensor muscle strength, trunk flexion and extension muscle endurance, and pelvic alignment. To measure hip joint muscle strength, biodex was used, and muscle endurance of the trunk was recorded at the end range of the trunk flexion and extension. And pelvic alignment was measured using Formetric 4D. Results: There were no significant differences in hip joint muscle strength, pelvic alignment, and trunk extension muscle endurance. The retention time was found to be significantly shorter in the mild low back pain group than in the normal group for trunk flexion muscle endurance. Conclusions: In the early stages of back pain or in the mild pain stage, training to increase muscle endurance of the flexor muscles may be helpful.

Characteristics of nickel cobalt oxide (NiCo2O4) nanosheet electrodes prepared by hydrothermal synthesis and heat treatment (수열합성법으로 제조된 니켈코발트산화물(NiCo2O4) 나노시트 전극의 특성)

  • Lee, Seokhee;Cha, Hyunjin;Lee, Sangwoon;Kim, Juna;Park, Jeonghwan;Hwang, Donghyun;Son, Young Guk
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • In a carbon-zero social atmospher, research is underway to reduce the use of fossil fuels. Interest in cleaner energy sources and their storage system is growing, and among them, research on effective energy storage is being actively conducted. Energy storage system(ESS) can be divided into secondary batteries, fuel cells, and capacitors, and the superiority of energy density of secondary batteries has a dominent influence on the ESS market. However, as problems with secondary batteries, charge/discharge speed, safety, and deterioration of electrodes are being highlighted. In this study, an electrode for supercapacitor with superior charge/discharge speed and specific capacitance is manufactured. The manufactured spinel nickel cobalt electrodes had specific capacitances of 1018.8 F/g, 690.8 F/g, and 475.1 F/g at 1 A/g in 1 M KOH electrolyte, and shows a performance retention rate of 77.48%, 63.30%, and 58.16% after 2000cycles at 7 A/g.

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping (공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상)

  • Jeon, Hyungkwon;Hong, Soonhyun;Kim, Minjeong;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF