Browse > Article
http://dx.doi.org/10.14478/ace.2021.1050

Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors  

Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University)
Kim, Seo Jin (Department of Chemical Engineering, Kangwon National University)
Shin, Junho (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Ryu, Taegon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Jeong, Jae-Min (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.4, 2021 , pp. 403-408 More about this Journal
Abstract
In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 µF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.
Keywords
Planar supercapcitor; Polyaniline; Carbon ink; Screen printing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, A review on phase change energy storage: Materials and applications, Energy Convers. Manage., 45, 1597-1615 (2004).   DOI
2 E. Payami, R. Teimuri-Mofrad, I. Ahadzadeh, and R. Mohammadi, A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance super-capacitor, Electrochim. Acta, 354, 136712-136724 (2020).   DOI
3 P. Du, Y. Dong, H. Kang, J. Li, J. Niu, and P. Liu, Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors, J. Power Sources, 449, 227477-227489 (2020).   DOI
4 K. Gholami Laelabadi, R. Moradian, and I. Manouchehri, One-step fabrication of flexible, cost/time effective, and high energy storage reduced graphene oxide@PANI supercapacitor, ACS Appl. Energy Mater., 3, 5301-5312 (2020).   DOI
5 R. Srinivasan, E. Elaiyappillai, E. J. Nixon, I. Sharmila Lydia, and P. M. Johnson, Enhanced electrochemical behavior of Co-MOF/PANI composite electrode for supercapacitors, Inorg. Chim. Acta, 502, 119393-119403 (2020).   DOI
6 M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci., 7, 867-884 (2014).   DOI
7 H. Hu, Z. Pei, and C. Ye, Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage, Energy Storage Mater., 1, 82-102 (2015).   DOI
8 T. Lv, M. Liu, D. Zhu, L. Gan, and T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors, Adv. Mater., 30, 1705489-1705505 (2018).   DOI
9 A. Tyagi, K. M. Tripathi, and R. K. Gupta, Metal-organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation, J. Mater. Chem. A, 3, 22507-20613 (2015).   DOI
10 N. A. Kyeremateng, T. Brousse, and D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol., 12, 7-15 (2017).   DOI
11 J. Zhang, G. Zhang, T. Zhou, and S. Sun, Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications, Adv. Funct. Mater., 30, 1910000-1910020 (2020).   DOI
12 N. Liu and Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture, Small, 13, 1701989-1701998 (2017).   DOI
13 D. Aradilla, M. Delaunay, S. Sadki, J.-M. Gerard, and G. Bidan, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19254-19253 (2015).   DOI
14 R. Guo, J. Chen, B. Yang, L. Liu, L. Su, B. Shen, and X. Yan, In-plane micro-supercapacitors for an integrated device on one piece of paper, Adv. Funct. Mater., 27, 1702394-1702404 (2017)   DOI
15 D. Qi, Y. Liu, Z. Liu, L. Zhang, and X. Chen, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater., 29, 1602802-1602840 (2017).   DOI
16 N. R. Chodankar, H. D. Pham, A. K. Nanjundan, J. F. S. Fernando, K. Jayaramulu, D. Golberg, Y. K. Han, and D. P. Dubal, True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors, Small, 16, 2002806-2002840 (2020).   DOI
17 S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, and X. Zhao, Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors, J. Mater. Chem. A, 2, 18125-18131 (2014).   DOI
18 Y. Shen, Z. Qin, S. Hu, L. Yang, X. Xu, L. Ding, and Y. Zhang, In-situ hybridization of graphene sheets onto polyaniline nanofiber arrays grown on the surface of carbon cloth under high electric voltage field for high-performance flexible supercapacitor, Carbon, 158, 711-718 (2020).   DOI
19 J. Li, S. S. Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng, and M. Ostling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing, ACS Nano, 11, 8249-8256 (2017).   DOI
20 P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, in nanoscience and technology: A collection of reviews from nature journals, World Scientific, 320-329, (2010).
21 S. Yu, B. Patil, and H. Ahn, PANI//MoO3 fiber-shaped asymmetric supercapacitors with roll-type configuration, Fibers Polym., 21, 465-472 (2020).   DOI
22 M. Z. Iqbal, M. M. Faisal, S. R. Ali, S. Farid, and A. M. Afzal, Co-MOF/polyaniline-based electrode material for high performance supercapattery devices, Electrochim. Acta, 346, 136039-136040 (2020).   DOI
23 Y. Chen, X. Li, Z. Bi, G. Li, X. He, and X. Gao, Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors, Chem. Eng. J., 353, 499-506 (2018).   DOI
24 T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen, X. Lu, Y. Wang, and X. Guo, High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes, Dalton Trans., 49, 3304-3311 (2020).   DOI
25 R. Awata, M. Shehab, A. El Tahan, M. Soliman, and S. Ebrahim, High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite, Electrochim. Acta, 347, 136229-136242 (2020).   DOI
26 J. Yun, D. Kim, G. Lee, and J. S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes, Carbon, 79, 156-164 (2014).   DOI
27 B. Shen, J. Lang, R. Guo, X. Zhang, and X. Yan, Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MoO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces, 7, 25378-25389 (2015).   DOI
28 L. Sun, X. Wang, W. Liu, K. Zhang, J. Zou, and Q. Zhang, Optimization of coplanar high rate supercapacitors, J. Power Sources, 315, 1-8 (2016).   DOI
29 D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, and D. Guay, Influence of the configuration in planar interdigitated electrochemical micro-capacitors, J. Power Sources, 230, 230-235 (2013).   DOI