• 제목/요약/키워드: Retaining wall material

검색결과 81건 처리시간 0.025초

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

환경친화적 블록식 보강토옹벽의 설계 및 시공사례연구 (Case Study of Environmental Segmental Retaining Wall(SRW) Using Greenstone Block)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제7권6호
    • /
    • pp.19-28
    • /
    • 2004
  • Segmental Retaining Wall(SRW) has been variously applying in Civil and Architecture construction. Recently, the application of environmental element in all type's structures came to essential requirement, and the construction cases of retaining wall using reinforced soil and block are more increased than the past. But, this trend more widely was spread environmental element as landscape work for the backside of reinforced retaining wall as well as block itself. New environmental block, Greenstone Block, developed to apply of this tendency. The retaining wall system using Greenstone can be environmental constructing at both block itself and backside of retaining wall. The material tests, the axial compressive strength test of block and bending test of fiber-pipe, exercised to design and construction of vertical SRW, which were satisfied NCMA standard. Through this procedure, Rewall (ver 1.0) was developed, which can be automation design of SRW including internal stability, external stability and local stability. And these can be considered setback of retaining wall, as well the examples of vertical retaining wall using block presented to satisfying the follows; strength of reinforced geotextile, height of retaining wall, surcharge, types of backfill and groundwater level etc. Many problems investigated on after or before of construction were due to local failure, insufficiency of bearing capacity and groundwater level. Especially, the local failure was many occurred to during compaction or after construction, and the cases of SRW construction is similar to the results of model test on vertical SRW.

옹벽구조물용 복합재료의 전단거동 특성 (The Shear Behavior of Composite Material for Retaining Wall)

  • 오기대;김경열;김대홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF

환경친화형 그린넷 보강토 옹벽 개발을 위한 식생시험 연구 (A Planting Study on the Development of Eco-friendly Reinforced Earth-Retaining Wall Using Planting Green Net)

  • 정대석
    • 한국환경과학회지
    • /
    • 제16권9호
    • /
    • pp.1099-1102
    • /
    • 2007
  • This paper presents eco-friendly planting method to overcome the problems of existing concrete retaining wall and gabion retaining wall, respectively, based on the examination on existing concrete and gabion retaining wall. Prior to doing this, proper design method was provided through pull out test. Planting method using gabion metal net and L shape green net retaining wall were compared and analyzed. According to this study, it is confirmed that reduction of construction period and economical profit in construction can be achieved by both manufacturing at the factory and self procurement at the job site as well as the use of metal net, which is applied as a substitution of existing strengthening material. For the effect of planting method, the use of L shape green net retaining wall shows superiority to environment-friendly gabion retaining wall in its ability to rootage and germination of the grass. The L shape green net retaining wall had excellent performance in helping rootage of grass and prevention of soil leakage, and even if raining period, remarkable damage of planting mat does not occur when planting mat is applied.

역 T 형 옹벽에 작용하는 연직토압분포 (Vertical Earth Pressure Distribution on Cantilever Retaining Wall)

  • 유남재;이명욱
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.181-189
    • /
    • 1996
  • Centrifuge model tests of cantilever retaining wall were performed to investigate the vertical stress distribution due to selfweight of backfill material. Model tests were carried out to find the effect of arching action on vertical stress distribution by changing the roughness of rigid boundary slope and the distance between retaining wall and boudary slope. A reduced scale model of cantilever retaining wall was made with concrete and Jumunjin Standary Sand with 80 % of relative density was used as foundation and backfill material. Centrifuge tests were performed by increasing g-level up to 40 g with measuring vertical stress induced by selfweight of backfill material. Test results on vertical stress distribution were analyzed and compared with results of Silo theory.

  • PDF

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.

옹벽 시설물의 객관적인 상태평가 기준정립 (The Standard Thesis of Objectivity Condition Evaluation for Infrastructure(Retaining Walls))

  • 이종영;신창건;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 사면안정학술발표회
    • /
    • pp.3.1-11
    • /
    • 2003
  • Recently the problems related to the failure of the retaining wall structure has become great concern since the damage to the properties and human losses have occurred in the rainy season. However, a detail guideline on safety inspection and appropriate diagnosis on the retaining wall structure have not yet proposed and therefore, the inspection process and results are mainly dependant upon the engineers. The objective of this study is to propose objective and quantitative evaluation method for the condition based on the damage shapes and material types. In this purpose, composing materials of retaining wall are divided Into concrete, gabion, stone and reinforced earth, and then the evaluation items and method are suggested on the basis of the materials and structural characteristics of the retaining wall.

  • PDF

보강토옹벽의 최적 보강길이비 산정을 위한 수치해석적 연구 (Numerical Analysis for Optimum Reinforcement Length Ratio of Reinforced Earth Retaining Wall)

  • 박춘식;안우종
    • 한국지반환경공학회 논문집
    • /
    • 제19권12호
    • /
    • pp.5-14
    • /
    • 2018
  • 최근 국내에 사용되고 있는 보강토옹벽 공법은 전면체의 재질, 보강재, 축조방법, 축조경사에 따라 수많은 종류가 제안되었으나 각 공법에 따른 설계방법이나 상세검토항목 등의 규정이 명확하지 않으며 집중호우에 따른 붕괴도 빈번하게 발생하고 있는 실정이다. 본 연구에서는 이러한 보강토옹벽의 설계에 있어서 좀 더 안정된 기술적 접근을 위해 설치높이별 단면을 가정하고 단일 강도의 보강재를 사용한 보강토옹벽의 인발파괴와 높이별 최적의 보강재 조합을 산정하고 산정된 각 단면에 대해서 보강길이비(L/H)에 따른 안전율 변화를 통하여 보강재의 최적 설계와 다단식 보강토옹벽의 최적 설계 그리고 보강재인 토목섬유의 재질에 따른 최적 길이비를 산정하여 제시하였다.

옹벽파괴에 의한 사면붕괴 사례연구 (A case study on the landslide resulted from earth retaining wall failure)

  • 김형우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1084-1089
    • /
    • 2009
  • This paper presents the example of landslide triggered by the failure of earth retaining wall. Close examinations such as visual inspections and non-destructive testings revealed that the earth retaining wall does not have enough strength to resist active earth pressure and ground water pressure. This fact is proved to be a direct initiation of landslide. Numerical studies including slope stability analyses and seepage analyses were performed with material properties obtained by geophysical explorations and laboratory tests. The results of numerical studies show that the overturning of the earth retaining wall affects the slope stability, leading to landslide consequently.

  • PDF

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.