• Title/Summary/Keyword: Retaining wall

Search Result 731, Processing Time 0.027 seconds

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF

Model Tests for Measurement of Lateral Earth Pressure on Retaining Wall with the Relieving Platform Using Jumoonjin Sand (주문진 모래를 이용한 선반식 옹벽의 수평토압 측정 모형시험)

  • Moon, In-Jong;Kim, Byoung-Il;Yoo, Wan-Kyu;Park, Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5923-5929
    • /
    • 2013
  • Recently, the retaining wall with the relieving platform has received increasing interests also in Korea in that it can reduce the lateral earth pressure and provide more stability than conventional retaining wall. Previous studies with model tests studies covered only a limited test conditions. In this study, total 15 model tests were performed for various conditions with improved model test apparatus to confirm the effect of decreasing the lateral earth pressure on the retaining wall with the relieving platform. Jumoonjin sand was used for model soil and 2 load cells were used for each 15 layers to measure the lateral earth pressure. Based on the experimental results, the lateral earth pressure of the retaining wall with the relieving platform is less than the that of cantilever wall. The length of the platform and the location of the platform are the key factors influencing the lateral earth pressure.

Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall (블록식 보강토 옹벽의 하자발생 사례 분석)

  • 신은철;오영인;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

Reliability of Earth Retaining Structure during Earthquake (지진을 고려한 토류구조물의 신뢰도 해석)

  • 백영식;심태섭
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.39-50
    • /
    • 1989
  • A method is investigated to analyze the reliability of the gravity retaining wall which is designed to allow a limiting translational movement induces by the earthquake loading. Application of FOSM method to the Richards and Elms model yields a practical procedure for the analyses of the reliability and sensitivity of the retaining wall sujected to the earthquake. After examination of the practice (or the earthquake design of the retaining wall, the methods of the reliability analysis are considered. Finally, this study presents the step-by.step procedure for analyzing the reliability of the earth retaining structure for pratical convinience.

  • PDF

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Stability and Earth Pressure Distribution of Excavated Earth Retaining Wall by Centrifugal Model Tests (원심모형실험에 의한 굴착 흙막이벽의 안정 및 토압분포)

  • Kim, Y.C.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Lee, M.W.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 1997
  • In this study, centrifugal model tests were performed to investigate the behavior of excavated earth retaining wall with the depth of excavation and different types of wall(aluminum, steel panel). Jumunjin standard sand was used for foundation soil. The raining method was adopted to form the required relative density of the model ground. The lateral earth pressure measured from tests were compared with estimated active earth pressure by Rankine's theory. The test results have shown that the earth pressure acting on the retaining wall and the rotation displacement of the wall are influenced by the depth of excavation and the type of wall. It was found from the test results that the deformation of the wall increases with the depth of excavation.

  • PDF

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF

An influence of the Concrete blocks for Retaining Wall and Revetment on the Under Water Environment (콘크리트 호안블록이 수질환경에 미치는 영향)

  • Kim, Jeong-Jin;Choi, Hun;Lee, Sang-Tea;Kim, Gi-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.167-170
    • /
    • 1999
  • Recently, it is often reported that many rivers are polluted with diverse swages etc. Concrete blocks for retaining wall and revetment is considered as one of the reasons that bring about water pollution, which is indicated by the grouops related to the conservation of environment. From the viewpoint of theoretical matters, although concrete blocks for retaining wall and revetment are know to have no relations to water pollution, it is required to measure the level of water pollution more accurately. Therefore, in this paper, analysis of water, which concrete blocks for retaining wall and revetment is put in for certain periods, are carried out in order to the level of water pollution.

  • PDF

A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 개발)

  • Sim, Jae-Uk;Back, Sung-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF