• Title/Summary/Keyword: Retaining system

Search Result 371, Processing Time 0.025 seconds

Design Case Study of Permanent Excavation Wall Using Soil Nailing System (쏘일네일링 공법을 적용한 영구 지하굴착 벽체의 설계사례 연구)

  • Park, Si-Sam;Lee, Je-Man;Yoo, Chan-Ho;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.84-91
    • /
    • 2005
  • In case of soil nailing system, there have been many attempts to expand into slope and temporary earth retaining system stabilization method since the first ground excavation earth retaining system construction in 1993. Recently, jointing wall, underground wall of buildings and excavation earth retaining wall, construction were increasingly applied for effective utilization of the limited underground space and land application maximized. However, the application of joining wall into retaining wall or building by temporary soil nailing system and design of permanent wall were performed by using Rankine earth pressure theory without considering the distribution of earth pressure in the soil nailing. In this study was performed to introduce the design case by 'Two-Body Translation mechanism (TBTM)' to be able to consider distribution of earth pressure in the soil nailing when designing the permanent jointing wall using soil nailing system for effective utilization of ground space. Also, this study attempts to evaluate the earth pressure change, decreasing effect of wall displacement and increasing effect of stability when advanced soil nailing system is constructed using $FLAC^{2D}$ ${\nu}er.$ 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

Numerical Evaluation of Dynamic Behavior of Retaining Structure in a Deep Excavation (수치해석을 통한 대심도 흙막이 시설물의 동적 거동 평가)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Jong-Kwan;Kim, Dong-Chan;Kim, Seok-Jung;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.89-105
    • /
    • 2021
  • In this paper, feasibility study was carried out to evaluate necessity of seismic design of earth retaining structures in a deep excavation. Dynamic behavior of retaining system was analyzed using FLAC, a finite difference analysis program. It was shown that maximum bending moments of retaining walls and axial forces of supports were increased up to 98% and 87% during earthquake, respectively, compared to final excavation step, which indicates that dynamic earth pressure has a large effect on a retaining system. The stability of retaining system designed according to current design specifications was evaluated using structural forces obtained by numerical analysis, and effect of earthquake loading on structural design was analyzed.

Behavior of Reinforced Earth Retaining Wall for Permitting Reinforcement to Subside with Monitoring (현장계측을 통한 보강재 침하형 보강토 옹벽의 거동특성)

  • Chung, Jin-Hyuck;Oh, Jong-Keun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.5-15
    • /
    • 2009
  • The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block. However, this system defect may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall. Hence, the new connector system which was able to allow the settlement of reinforcement was developed in this study and a test was carried out in the study area which is divided into the conventional reinforced earth retaining wall and reinforced Earth Retaining Wall driving the settlement. As the results of field monitoring in situ, the ratio of tensile force calculated at maximum value on contiguous portion of front block showed that the settlement type decreased the stress concentration near the face of front block greater than the conventional type.

Development of stability evaluation system for retaining walls: Differential evolution algorithm-artificial neural network

  • Dong-Gun Lee;Sang-Yun Lee;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.329-339
    • /
    • 2023
  • The objective of this study is to develop a Stability Evaluation System for retaining walls to assess their safety in real-time during excavation. A ground investigation is typically conducted before construction to gather information about the soil properties and predict wall stability. However, these properties may not accurately reflect the actual ground being excavated. To address this issue, the study employed a differential evolution algorithm to estimate the soil parameters of the actual ground. The estimated results were then used as input for an artificial neural network to evaluate the stability of the retaining walls. The study achieved an average accuracy of over 90% in predicting differential settlement, wall displacement, anchor force, and structural stability of the retaining walls. If implemented at actual excavation sites, this approach would enable real-time prediction of wall stability and facilitate effective safety management. Overall, the developed Stability Evaluation System offers a promising solution for ensuring the stability of retaining walls during construction. By incorporating real-time soil parameter analysis, it enhances the accuracy of stability predictions and contributes to proactive safety management in excavation projects.

Internal Stability of Timber Framed Earth Retaining Wall (목재옹벽의 내적안정 평가에 관한 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2011
  • This paper introduces a recently developed thinning-out timber framed earth retaining wall system. Timber framed retaining walls are usually designed by using design code of gravity type retaining wall but internal stability of timber framed earth retaining walls is often neglected. In this study, it is recommended to use the design code for segmental retaining walls by National Concrete Masonry Association (NCMA, 1997) to check internal stability of timber framed earth retaining wall. Based on the several shear test results for 3 types of timber frames, a simple design chart including internal stability is suggested.

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF

Development of Green Retaining-wall System with Native Evergreen Plants Corresponding to the Southern Region - A Case Study of Tongyeong City in Gyeongsangnam-do - (남부지역의 특성을 고려한 상록벽면녹화 공법 개발 -경남 통영시를 사례로-)

  • Kang Ho-Chul;Kim Kwang-Ho;Huh Keun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.32-47
    • /
    • 2005
  • This study was carried out to investigate and propose a green-wall system with evergreen plants for urban greening of Tongyeong City. To achieve these goals, the requirements and possibilities for wall greening were investigated and evaluated considering the location, topography, and climate of Tongyeong City. Existing walls were analyzed and then a suitable green wall system is proposed. Tongyeong City and its 151 islands covers the central and the southern parts of the Goseong peninsula. Most of the land is covered with hills and mountains; $43.9\%$ of the land area has a slope greater than $15\%$ and most hills and mountains near the urban area have a slope of more than $30\%$. As a result of the topographical properties, concrete retaining walls can often be seen along the streets in urbanized areas. These retaining walls are not only unattractive, but they also create environmental problems, and thus should be replaced with native evergreen plants. Options for replacing the retaining walls include evergreen vine-plants such as Hedaa spp. and Euonymus radicans, but native evergreen shrubs such as Pittosporum tobira, Nandina domestica, Raphiolepis umbellata, Ilex cornuta, flex crenata, Fatsia japonic, and Aucuba japonica may be a more attractive option. Current wall conditions are unsuitable for planting vines, therefore, a reservoir-drainage-type plant box filled with a light artificial substrate is required for greening these concrete retaining walls. These might be irrigated in the dry season and fertilized annually by an appropriate system. These plant boxes could be attached along the entire walls. An experiment investigating effects of substrates and bark-chip mulching on the growth of Hedera spp. showed that the mixture of cerasoil and field soil(v/v, 4:6) was superior to field soil alone and to the mixture of perlite small grain, large grain, and field soil(v/v/v, 2:2:6). Bark-chip mulching tended to increase the growth of Hedera spp..

A Study of the Optimal Displacement Analysis Algorithm for Retaining Wall Displacement Measurement System Based on 2D LiDAR Sensor (2D LiDAR 센서 기반 흙막이 벽체 변위 계측 시스템의 최적 변위 분석 알고리즘 연구)

  • Kim, Jun-Sang;Lee, Gil-yong;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.70-78
    • /
    • 2023
  • Inclinometer has several problems of 1)difficulty installing inclinometer casing, 2) measuring 2D local lateral displacement of retaining wall, 3) measurement by manpower. To solve such problems, a 2D LiDAR sensor-based retaining wall displacement measurement system was developed in previous studies. The purpose of this study is to select a displacement analysis algorithm to be applied in the retaining wall displacement measurement system. As a result of the displacement analysis algorithm selection, the M3C2 (Multiple Model to Model Cloud Comparison) algorithm with a displacement estimation error of 2mm was selected as the displacement analysis algorithm. If the M3C2 algorithm is applied in the system and the reliability of the displacement analysis result is secured through several field experiments. Convenient management of the displacement for the retaining wall is possible in comparison with the current measurement management.

A Web-based Decision Support System for Selecting Optimal Retaining Wall Systems (적정 흙막이 공법 선정을 위한 웹 기반 의사결정 지원 시스템)

  • Kim, Hye-Won;Choi, Myung-Seok;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.694-697
    • /
    • 2008
  • A retaining wall system suitable for a construction project is selected on the basis of subsoil conditions. If the decision-maker selects an improper system, it has a negative effect on the cost and schedule of the construction project. There have been many studies related to the models and processes for selecting optimal retaining wall systems. However, engineers who are not familiar with formal analysis methods could not easily utilize the formal methods proposed by previous studies. In order to overcome this problem, we developed a web-based decision support system called Dr. Underground, which is both physically and technically easily accessible by engineers. Dr. Underground was developed based on a selection method developed from a precedent research project. It was developed using a server-side web language ASP.NET and MS Access as a database. Decision-makers can input data about the building's condition, construction site conditions and adjacent site conditions in this system. Based on the input data, Dr. Underground recommends an optimal retaining wall system for the inputted conditions and provides detail information on the system.

  • PDF

Development of Quantity Take-off Building Information Modeling System for Retaining Wall (객체 기반 물량 산출을 위한 흙막이 BIM 설계 시스템 구축)

  • Kang, SeoungWoo;Kim, Eun-Seok;Lee, Si-Eun;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.197-205
    • /
    • 2022
  • In this paper, a retaining wall system, developed using building Information modeling (BIM), is presented. Based on the information from a literature review, elementary technologies for the system were defined and developed. First, for the elementary technology, BIM libraries were constructed using standards and previous study results to achieve versatility and reusability. Second, methods for determining the quantity take-off (QTO) of a retaining wall were reviewed for an earth-work calculating system. Additionally, inverse distance weighting interpolation was used to generate topography. Finally, four formulas for calculating the QTO were proposed and devised for each element. After its development, the BIM system was analyzed and verified through comparison with a two-dimensional drawing-based QTO. The proposed system is deemed to be practical for determining the QTO of retaining walls and earth works. The contributions and limitations of the research are discussed in this paper.