• 제목/요약/키워드: Retaining system

검색결과 372건 처리시간 0.029초

Field Application of Up-Up Construction Using Buried Wale Continuous Walt System Method (CWS공법(Buried Wale Continuous Wall System)을 적용한 Up-Up 시공사례)

  • Lee Jeong-Bae;Lim In-Sig;Kim Dong-Hyun;Oh Bo-Hwan;Ha In-Ho;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.1-4
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved duality and reduction of construction period can be obtained from CWS method.

  • PDF

Study on Development of CWS (buried wale Continuous Wall System) Method (CWS공법(buried wale Continuous Wall System)의 개발에 관한 연구)

  • Lee Jeong-Bae;Lim In-Sig;Chun Sung-Chul;Oh Boh-Wan;Ha In-Ho;Rhim Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • 제6권2호
    • /
    • pp.81-89
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved qualify and reduction of construction period can be obtained from CWS method.

A Study on the Reliability Evaluation Index Development for the Information Resources Retained by Institutions: Focusing on Humanities Assets

  • Jeong, Dae-Keun;Noh, Younghee
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제9권2호
    • /
    • pp.65-89
    • /
    • 2019
  • This study has the aim of developing an evaluation index that can help evaluate the reliability of the information resources of institutions retaining humanities assets for the purposes of laying out the foundation for providing one-stop portal service for humanities assets. To this end, the evaluation index was derived through the analysis of previous research, case studies, and interviews with experts, the derived evaluation index was then applied to the humanities assets retaining institutions to verify the utility. The institutional information resources' reliability evaluation index consisted of the two dimensions of the institutions' own reliability evaluation index. The institution provided a service and system evaluation index. The institutions' own reliability evaluation index consisted of 25 points for institutional authority, 25 points for data collection and construction, 30 points for data provision, and 20 points for appropriateness of data, for a total of 100 points, respectively. The institution provided service and system evaluation indexes consisting of 25 points for information quality, 15 points for appropriateness (decency), 15 points for accessibility, 20 points for tangibility, 15 points for form, and 10 points for cooperation, for the total of 100 points, respectively. The derived evaluation index was used to evaluate the utility of 6 institutions representing humanities assets through application. Consequently, the reliability of the information resources retained by the Research Information Service System (RISS) of the Korea Education & Research Information Service (KERIS) turned out to be the highest.

Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake (지진시 옹벽의 수평변위 예측기법의 개발)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권5호
    • /
    • pp.143-150
    • /
    • 2021
  • To develop the technique for predicting the horizontal displacement of a retaining wall induced by an earthquake, an equation of motion that depicts the retaining wall-soil vibrating system was derived. The resulting differential equation was solved using the Runge-Kutta-Nystr?m method. Considering the pre-mentioned derivation process, the analysis procedures for obtaining horizontal displacement induced by an earthquake were programmed. The core algorithm of the displacement-force relationship, which is the main engine of the developed program, was suggested. Considering the results obtained by adopting the developed program to the assumed retaining wall under an earthquake, the relationships between the time-displacement, time-force, and displacement-force were reasonable. According to the results computed by the program, the displacements to the front direction of the wall occurred, and the displacement per cycle converged after some cycles elapsed. Displacements with a natural period were calculated, which showed that the maximum displacement was observed when the natural frequency was slightly different from the excitation frequency rather than the same values of the two frequencies. This happens because the vibrating system was modeled by two springs with different stiffness.

The Development and Application of KOESWall System (분리형 보강토 옹벽의 개발 및 적용사례)

  • 김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.323-328
    • /
    • 2001
  • In the ordinary reinforced earth wall, which was constructed by incremental construction method, the horizontal deformation of the facing due to the compaction induced horizontal earth pressure was unavoidable. Thus the KOESWall system which are adopted the isolated construction method was developed by I&S Eng. Co., Ltd. in 1999. Due to its systematical feature, KOESWall system is able to minimizes the horizontal deformation of reinforced wall effectively and it can be used as temporary structures more economically without the lacing block. In this report, it is shown that the concept and case histories of KOESWall system as a retaining structures.

  • PDF

Behavior of Mechanically Stabilized Earth Retaining Walls with Different Construction Sequence (시공과정에 따른 보강토 옹벽의 거동 특성)

  • 유충식;이광문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.473-480
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of mechanically stabilized earth retaining wall. It has been recognized that the currently available design guidelines, which is base on the limit equilibrium approach, cannot properly account the interaction effect between the components, construction sequence, and foundation settlement which may impose a significant influence on the wall behavior. A parametric study using finite element analysis was performed to investigate the behavior of MSE wall under different construction conditions and the applicability of the current design approach. In the parametric analysis, the effects of the construction sequence, the surcharge, and the foundation stiffness were studied and a detailed finite element modeling for various components of the system were employed. The results, such as wall displacement and earth pressure distributions, reinforcement forces, vertical stress distribution were then thoroughly analyzed to investigate the effect of construction details on the wall behavior.

  • PDF

The Study on the physical Properties of tencel fabrics (텐셀직물의 물리적 특성에 관한 연구)

  • Kwon, Oh Kyung;Kwon, HyunSun;Na, Young-Joo
    • Fashion & Textile Research Journal
    • /
    • 제2권2호
    • /
    • pp.132-137
    • /
    • 2000
  • This study was carried out to evaluate the distribution of mechanical and thermal properties of 14 sorts of tencel fabrics. Three kinds of cellulosic fabrics such as cotton 100%, cotton/tencel 50/50% and rayon 100% were used to compare with tencel fabrics. Furthermore, for the comparison of thermal properties, these fabrics were repeatedly washed 1, 3, 5, 10, 15 and 20 times respectively. The mechanical properties were measured by the KES-FB system and Thereto Labo II type was employed to measure the thermal properties of warmth retaining and contact warm/cool feeling($q_{max}$). The experimental results were analysed statistically to relate the mechanical and thermal properties. Tencel showed sufficient ability to recover from bending deformation and drapability comparing with other cellulosic fabrics and had a silhouette which goes along with the body.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Microbial Inhibition Test of Sustained-Release Chlorine Dioxide Gas Freshness Retaining Agent

  • Choe, Yoowha
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.211-215
    • /
    • 2020
  • Currently, most of the chlorine dioxide gas is processed at the beginning of storage or distribution. It has the disadvantage of not being able to continuously process gas since there is no system that can continuously process it during the distribution process. Therefore, in order to minimize changes in freshness and quality during the distribution process of agrifood, there is a need for a sustained-release chlorine dioxide gas treatment technology that can be continuously released. Therefore, in this study, the film to be used was examined so that the chlorine dioxide gas can be continuously released for a certain period of time, the concentration of the reactant and the viscosity at the time of the reaction were determined, and a chlorine dioxide gas gel pack was manufactured using this optimal condition. In addition, the gel pack was used to measure the amount of chlorine dioxide gas released and the sterilization effect of food poisoning bacteria.

Integral Bridge System with Geosynthetic-Reinforced Backfill

  • Tatsuoka, Fumio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.39-52
    • /
    • 2007
  • A new type bridge combining an integral bridge and a pair of geosynthetic-reinforced soil (GRS) retaining walls having full-height rigid (FHR) facings, called the GRS integral bridge, is proposed. The geosynthetic reinforcement layers are connected to the FHR facings (i.e., RC parapets) that are integrated with a girder without using any girder-support. GRS integral bridges are basically much more cost-effective in construction and long-term maintenance while having a much higher seismic stability than conventional-type bridges having a girder via movable and fixed supports on a pair of cantilever abutments. GRS integral bridges are better than bridges using GRS retaining walls as abutments and also than conventional integral bridges with unreinforced backfill. To validate the above, a series of static cyclic lateral loading tests of the facing and a series of shaking table tests were performed on smallscaled models of different bridge types.

  • PDF