• Title/Summary/Keyword: Response technology

Search Result 9,351, Processing Time 0.034 seconds

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine Support Structure (해상풍력발전기 지지구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.342-350
    • /
    • 2015
  • A seismic reliability analysis of the jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function using the dynamic response of the support structure, numerous dynamic calculations should be performedin an approach like the FORM (first-order reliability method). This causes a substantial increase in the analysis cost. Therefore, in this paper, a new reliability analysis approach using the static response is used. The dynamic effect of the response is considered by introducing a new parameter called the peak response factor (PRF). The probability distribution of the PRF could be estimated using the peak value of the dynamic response. The probability distribution of the PRF was obtained for a set of ground motions. A numerical example is considered to compare the proposed approach with the conventional static-response-based approach.

A response matrix method for the refined Analytic Function Expansion Nodal (AFEN) method in the two-dimensional hexagonal geometry and its numerical performance

  • Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2422-2430
    • /
    • 2020
  • In order to improve calculational efficiency of the CAPP code in the analysis of the hexagonal reactor core, we have tried to implement a refined AFEN method with transverse gradient basis functions and interface flux moments in the hexagonal geometry. The numerical scheme for the refined AFEN method adopted here is the response matrix method that uses the interface partial currents as nodal unknowns instead of the interface fluxes used in the original AFEN method. Since the response matrix method is single-node based, it has good properties such as good calculational efficiency and parallel computing affinity. Because a refined AFEN method equivalent nonlinear FDM response matrix method tried first could not provide a numerically stable solution, a direct formulation of the refined AFEN response matrix were developed. To show the numerical performance of this response matrix method against the original AFEN method, the numerical error analyses were performed for several benchmark problems including the VVER-440 LWR benchmark problem and the MHTGR-350 HTGR benchmark problem. The results showed a more than three times speedup in computing time for the LWR and HTGR benchmark problems due to good convergence and excellent calculational efficiency of the refined AFEN response matrix method.

The Optimization of Bank Branches Efficiency by Means of Response Surface Method and Data Envelopment Analysis: A Case of Iran

  • Shadkam, Elham;Bijari, Mehdi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.2
    • /
    • pp.13-18
    • /
    • 2015
  • In this paper the DRC model is presented for solving multi objective problem. The proposed model is a combination of data envelopment analysis, Cuckoo algorithm and the response surface method. Due to reasons like costs, time and irreversible damages, it is not possible to analyze each and every one of the proposed models in practice, so the simulation is used. Since the number of experiments for simulation process is high then the optimization has gone to practice and directs the simulation process. The response surface method is used as one of the approaches of simulation optimization. Furthermore, data envelopment analysis is used to consider several response surfaces as efficiency response surface. Then this efficiency response surface is solved by Cuckoo algorithms. The main advantage of DRC model is to make one efficiency response surface function instate of multi surface function for every output and also using the advantages of Cuckoo algorithms. In order to demonstrate the effectiveness of the proposed approach, the branches of Refah bank in Mashhad is analyzed and the results are presented.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.

Cancer Chemopreventive Effects of Korean Seaweed Extracts

  • Lee, Saet-Byoul;Lee, Joo-Young;Song, Dae-Geun;Pan, Cheol-Ho;Nho, Chu-Won;Kim, Min-Cheol;Lee, Eun-Ha;Jung, Sang-Hoon;Kim, Hyung-Seop;Kim, Yeong-Shik;Um, Byung-Hun
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.613-622
    • /
    • 2008
  • Cancer chemopreventive effects can be exerted through the induction of phase II detoxification enzymes and the inhibition of inflammatory responses. In this study, the cancer chemopreventive effects and anti-inflammatory responses of 30 seaweed extracts were examined. The extracts of Dictyota coriacea and Cutleria cylindrica exhibited the high chemoprevention index, having 4.36 and 4.66, respectively. They also activated antioxidant response element at $100\;{\mu}g/mL$ by about 3-fold while did not activate xenobiotic response element. Seven seaweed extracts, Ishige okamurae, Desmarestia ligulata, Desmarestia viridis, Dictyopteris divaricata, D. coriacea, Sargassum horneri, and Sargassum yezoense, showed significant inhibition on nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependant manner in $5-20\;{\mu}g/mL$. These seaweed extracts could be used as food materials for cancer chemoprevention. D. coriacea could contain potential chemopreventive agents not only that regulate genes via an ARE-dependent mechanism but also prevent the inflammation through inhibition of NO and $PGE_2$ production.

A Development Plan for Integrated Inventory Management System to Support Decision Making for Disaster Response (재난대응 의사결정 지원을 위한 인벤토리 통합 관리 시스템 구축 방안)

  • Choi, Soo-Young;Gang, Su-Myung;Kim, Jin-Man;Oh, Eun-Ho;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2014
  • Social overhead capital (SOC) facilities are being threatened continuously by abnormal climate events that are increasing globally. For disaster response, rapid decision making on evacuation routes and other matters is critical. For this purpose, spatiotemporal information that combine data on disasters and SOC facilities needs to be utilized. This information is separately collected by government agencies and public organizations, and is not managed in an integrated manner. For rapid disaster response, an integrated management of separately collected disaster data and the creation of such information as the safety and damages on SOC facilities are required. To achieve this goal, it is essential to build inventories that integrate all the related information to support decision making indispensable for disaster response. In this study, a development plan for an integrated inventory management system based on the management and connection of inventories to support rapid decision making for disaster response is proposed. This system can collect and standardize data related to disasters and SOC facilities that are being managed separately and provide integrated information in line with the needs of users. The proposed system can be used as a decision making tool for proactive disaster response.