Cancer Chemopreventive Effects of Korean Seaweed Extracts

  • Lee, Saet-Byoul (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Lee, Joo-Young (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Song, Dae-Geun (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Pan, Cheol-Ho (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Nho, Chu-Won (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Kim, Min-Cheol (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Lee, Eun-Ha (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Jung, Sang-Hoon (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute) ;
  • Kim, Hyung-Seop (Department of Biology, Kangnung National University) ;
  • Kim, Yeong-Shik (College of Pharmacy/Natural Products Research Institute, Seoul National University) ;
  • Um, Byung-Hun (Natural Product Research Center, Korea Institute of Science and Technology Gangneung Institute)
  • Published : 2008.06.30

Abstract

Cancer chemopreventive effects can be exerted through the induction of phase II detoxification enzymes and the inhibition of inflammatory responses. In this study, the cancer chemopreventive effects and anti-inflammatory responses of 30 seaweed extracts were examined. The extracts of Dictyota coriacea and Cutleria cylindrica exhibited the high chemoprevention index, having 4.36 and 4.66, respectively. They also activated antioxidant response element at $100\;{\mu}g/mL$ by about 3-fold while did not activate xenobiotic response element. Seven seaweed extracts, Ishige okamurae, Desmarestia ligulata, Desmarestia viridis, Dictyopteris divaricata, D. coriacea, Sargassum horneri, and Sargassum yezoense, showed significant inhibition on nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependant manner in $5-20\;{\mu}g/mL$. These seaweed extracts could be used as food materials for cancer chemoprevention. D. coriacea could contain potential chemopreventive agents not only that regulate genes via an ARE-dependent mechanism but also prevent the inflammation through inhibition of NO and $PGE_2$ production.

Keywords

References

  1. De Flora S, Ferguson LR. Overview of mechanisms of cancer chemopreventive agents. Mutat. Res. 591: 8-15 (2005) https://doi.org/10.1016/j.mrfmmm.2005.02.029
  2. Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metast. Rev. 21: 231-255 (2002) https://doi.org/10.1023/A:1021254725842
  3. Jo JY, Lee CY. Cancer chemoprevention by dietary proanthocyanidins. Food Sci. Biotechnol. 16: 501-504 (2007)
  4. Kim JS, Nam YJ, Kwon TW. Induction of quinone reductase activity by genistein, soybean isoflavone. Food Sci. Biotechnol. 5: 70-75 (1996)
  5. Lee SB, Cha KH, Selenge D, Solongo A, Nho CW. The chemopreventive effect of taxifolin is exerted through AREdependent gene regulation. Biol. Pharm. Bull. 30: 1074-1079 (2007) https://doi.org/10.1248/bpb.30.1074
  6. Prochaska HJ, Talalay P. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res. 48: 4776-4782 (1988)
  7. Fahey JW, Dinkova-Kostova AT, Stephenson KK, Talalay P. The 'Prochaska' microtiter plate bioassay for inducers of NQO1. Method Enzymol. 382: 243-258 (2004) https://doi.org/10.1016/S0076-6879(04)82014-7
  8. Rushmore TH, Pickett CB. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J. Biol. Chem. 265: 14648-14653 (1990)
  9. Okey AB, Riddick DS, Harper PA. The Ah receptor: Mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Toxicol. Lett. 70: 1-22 (1994) https://doi.org/10.1016/0378-4274(94)90139-2
  10. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal. Biochem. 126: 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  11. Wang HQ, Smart RC. Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2, and TNFalpha expression but not tumor promotion. J. Cell Sci. 112: 3497-3506 (1999)
  12. Lee JM, Kim HJ, Choi HJ, You YH, Hwang KT, Lee MY, Park CS, Jun WJ. Effects of Oenanthe javanica on transcriptional regulation of COX-2 by inhibiting translocation of p65 subunit in LPSstimulated murine peritoneal macrophages. Food Sci. Biotechnol. 15: 975-979 (2006)
  13. Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat. Res. 555: 107-119 (2004) https://doi.org/10.1016/j.mrfmmm.2004.05.022
  14. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001-1003 (1991) https://doi.org/10.1126/science.1948068
  15. Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. P. Natl. Acad. Sci. USA 95: 8823-8828 (1998)
  16. Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Bioph. Res. Co. 240: 419-424 (1997) https://doi.org/10.1006/bbrc.1997.7672
  17. Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19: 711-721 (1998) https://doi.org/10.1093/carcin/19.5.711
  18. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2: 149-156 (2001) https://doi.org/10.1016/S1470-2045(00)00256-4
  19. Attar E, Bulun SE. Aromatase and other steroidogenic genes in endometriosis: Translational aspects. Hum. Reprod. Update 12: 49- 56 (2006) https://doi.org/10.1093/humupd/dmi034
  20. Wood CE. Estrogen/hypothalamus-pituitary-adrenal axis interactions in the fetus: The interplay between placenta and fetal brain. J. Soc. Gynecol. Invest. 12: 67-76 (2005) https://doi.org/10.1016/j.jsgi.2004.10.011
  21. Molloy ES, McCarthy GM. Eicosanoids, osteoarthritis, and crystal deposition diseases. Curr. Opin. Rheumatol. 17: 346-350 (2005) https://doi.org/10.1097/01.bor.0000155363.61120.c3
  22. Fahmi H. mPGES-1 as a novel target for arthritis. Curr. Opin. Rheumatol. 16: 623-627 (2004) https://doi.org/10.1097/01.bor.0000129664.81052.8e
  23. Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 103: 147-166 (2004) https://doi.org/10.1016/j.pharmthera.2004.06.003
  24. Hull MA, Ko SC, Hawcroft G. Prostaglandin EP receptors: Targets for treatment and prevention of colorectal cancer? Mol. Cancer Ther. 3: 1031-1039 (2004) https://doi.org/10.4161/cbt.3.10.1227
  25. Brueggemeier RW, Richards JA, Petrel TA. Aromatase and cyclooxygenases: Enzymes in breast cancer. J. Steroid Biochem. 86: 501-507 (2003) https://doi.org/10.1016/S0960-0760(03)00380-7
  26. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG. Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66: 605-608 (2003) https://doi.org/10.1021/np0204038
  27. Favreau LV, Pickett CB. Transcriptional regulation of the rat NAD(P)H: Quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J. Biol. Chem. 266: 4556-4561 (1991)
  28. Williams RT. Comparative patterns of drug metabolism. Fed. Proc. 26: 1029-1039 (1967)
  29. Yang CS, Smith TJ, Hong JY. Cytochrome P-450 enzymes as targets for chemoprevention against chemical carcinogenesis and toxicity: Opportunities and limitations. Cancer Res. 54: 1982s-1986s (1994)
  30. Han M, Wen JK, Zheng B, Zhang DQ. Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW264.7 macrophages through the inhibition of iNOS and COX-2 gene expression. Life Sci. 75: 675-684 (2004) https://doi.org/10.1016/j.lfs.2003.12.022
  31. Bonotto S. Cultivation of plants: Multicellular plants. Vol. III, pp. 468-529. In: Marine Ecology. Kinne O (ed). Wiley, London, UK (1976)
  32. Kang JW. Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 8. Ministry of Education, Seoul, Korea. p. 465 (1968)
  33. Medlener JC. The Sea Vegetable Book, Foraging, and Cooking Seaweeds. Clarkson N. Potter Publishers, New York, NY, USA. p. 288 (1977)
  34. Baker JT. Seaweeds in pharmaceutical studies and applications. Proc. Int. Seaweed Symp. 11: 29-40 (1984)
  35. Department of Marine Biology, South China Sea Institute of Oceanology. Marine Medical Organisms from the South China Sea. Academia Sinica Science Press, Beijing, China (1978)
  36. Hotta M, Ogata T, Nita A, Hosikawa K, Yanagi M, Yamazaki K. Useful Plants of the World. Heibonsya, Tokyo, Japan. p. 1499 (1989)
  37. Tseng CK. Common Seaweeds of China. Science Press, Beijing, China. p. 316 (1983)
  38. Shiomi K. Agglutinins of marine algae. Suisangaku Shiriizu. 45: 120-131 (1983)
  39. Hornsey IS, Hide D. The production of antimicrobial compounds by britich marine algae. I. Antibiotic-producing marine algae. Brit. Phycol. J. 9: 353-361 (1974) https://doi.org/10.1080/00071617400650421
  40. Kang JW, Koh NP. Algal Mariculture. Taewha Publishing Co., Busan, Korea. p. 294 (1977)
  41. Okazaki A. Seaweeds and Their Uses in Japan. Tokai University Press, Kanagawa, Japan. p. 165 (1971)
  42. Takagi M. Seaweeds as medicine. pp. 321-325. In: Advance of Phycology in Japan. Tokida J, Hirose H (eds). Veb Gustav Fisher Verlag, Jena, Germany (1975)
  43. Tseng CK, Zhang JF. Chinese seaweeds in herbal medicine. Proc. Int. Seaweed Symp. 11: 152-154 (1984)
  44. Read BE, How GK. The iodine, arsenic, ion, calsium, and sulfur content of Chinese medicinal algae. Chinese J. Physiol. 1: 99-108 (1927)
  45. Nisizawa K. Pharmaceutical studies on marine algae in Japan. pp. 243-264. In: Marine Algae in Pharmaceutical Science. Hoppe HA, Levring T, Tanaka Y (eds). Walter de Gruyter, Berlin, Germany (1979)
  46. Hoppe HA. Marine algae and their products and constituents in pharmacy. pp. 25-119. In: Marine Algae in Pharmaceutical Science. Hoppe HA, Levring T, Tanaka Y (eds). Walter de Gruyter, Berlin, Germany (1979)
  47. Tokuda H, Ohno M, Ogawa H. Cultivation of Marine Algal Resources. Midori-shobou, Tokyo, Japan. p. 354 (1986)
  48. Arasaki SAT. Vegetables from Sea. Japan Publications, Tokyo, Japan. p. 169 (1983)
  49. Baik SE, Won KJ. Antimicrobial activity of the volatile and lipid fractions of marine algae. Korean J. Phycol. 1: 293-310 (1986)
  50. Mishigeni KE. Algal resources, exploitation, and uses in East Africa. Vol. 2, pp. 387-419. In: Progress in Phycological Research. Round FE, Chapman DJ (eds). Elsevier Science, Berlin, Germany (1983)
  51. Dawes CJ. Marine Botany. John Wiley & Sons, Hoboken, NJ, USA. p. 628 (1981)
  52. Dawson EY. Marine Botany. Holt, Rinehart, and Wiston Inc., New York, NY, USA. p. 371 (1966)