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Abstract Cancer chemopreventive effects can be exerted through the induction of phase Il detoxification enzymes and the
inhibition of inflammatory responses. In this study, the cancer chemopreventive effects and anti-inflammatory responses of 30
seaweed extracts were examined. The extracts of Dictyota coriacea and Cutleria cylindrica exhibited the high chemoprevention
index, having 4.36 and 4.66, respectively. They also activated antioxidant response element at 100 pg/mL by about 3-fold
while did not activate xenobiotic response element. Seven scaweed extracts, Ishige okamurae, Desmarestia ligulata, Desmarestia
viridis, Dictyopteris divaricata, D. coriacea, Sargassum horneri, and Sargassum yezoense, showed significant inhibition on
nitric oxide (NO) and prostaglandin E, (PGE,) production in a dose-dependant manner in 5-20 pg/mL. These seaweed extracts
could be used as food materials for cancer chemoprevention. D. coriacea could contain potential chemopreventive agents not
only that regulate genes via an ARE-dependent mechanism but also prevent the inflammation through inhibition of NO and
PGE, production.
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Introduction

Numerous epidemiological data have suggested that cancer
is preventable disease. The factors causing various types of
cancers share common pathogenic mechanisms such as
DNA damage, oxidative stress, and chronic inflammation
(1). Recently prevention of cancer is considered as a
preferable option rather than a chemotherapy since cancer
is a preventable disease by avoiding exposures to the risk
factors. Cancer chemoprevention is defined as the
pharmacological administration of synthetic or naturally
occurring compounds that prevent, inhibit, or reverse
carcinogenesis, or prevent the development of nvasive
cancer (2,3).

The potential chemopreventive agents regulating detoxi-
fication enzymes are divided into two groups, designated
monofunctional and bifunctional inducers. Monofunctional
inducers upregulate a number of phase Il detoxification
enzymes, including quinone reductase (QR), which is also
known as NAD(PYH: quinone oxidoreductase, NQO1 (4),
and glutathione-8-transferases (GST) (5). Bifunctional
inducers upregulate a similar array of phase I enzymes, in
addition to a few phase I enzymes, including CYP1AL.
Since phase 1 enzymes are involved in both bioactivation
and detoxification of carcinogens, monofunctional inducers
are closely related to chemoprevention, relative to
bifunctional inducers (6). There are 2 regulatory elements,
antioxidant response element (ARE) and xenobiotic response
element (XRE) known for regulating detoxification
enzyme by chemopreventive agents. The ARE is related
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with induction of phase Il detoxification enzymes
{monofunctional induction), while the XRE functions in
the induction of not only phase II but also some phase |
cytochrome P450 enzymes (bifunctional induction). Both
ARE and XRE are present in the regulatory region of OR
and GST genes, (7,8) while only XRE is present in the
regulatory region for cytochrome P450 1A (CYPI4) gene
9).

Anti-inflammatory agents can be also classified as cancer
chemopreventive agents that can inhibit tumor promotion
(1). Both nitric oxide (NO) and prostaglandins (PGs)
which are synthesized by nitric oxide synthetase (NOS)
and cyclo-oxygenases {COX), respectively, are known to
be important mediators of acute and chronic inflammation
{10-12). NO is a pleiotropic regulator, pivotal to numerous
biological processes including vasodilation, neurotransmission,
and macrophage-mediated immunity (13). There is a
significant proof implicating NO in carcinogenesis as an
endogenous mutagen, an enhancer of protooncogene
expression, and an inhibitor of apoptosis (14-16). It appears
that once the tumor is established and progressed, NO may
also mediate pro-tumorigenic activities, including capillary
leakage, angiogenesis, leukocyte adhesion, and infiltration,
and eventually metastasis (17,18). Increased NOS expression
and/or activity were also reported during tumorigenesis,
suggesting common feature of many cancers (13). Thus,
developing selective inhibitors of NO-releasing agents may
lead to significant strategies for chemoprevention of
cancer. PGs, other mediators of inflammation, belong to
the class of prostanoid fatty acid derivatives of arachidonic
acid, which is liberated from membrane phospholipids by
action of phospholipases, are metabolized into prostagladin
G, (PGG,) and prostagladin H, (PGH,) by COX-1 and
COX-2, and are converted into prostagladin E, (PGE,) by
prostaglandin E systhetase (PGES). PGE, not only is
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linked to the synthesis and release of several hormones
(19,20), but also is important in normal joint physiology
and is a principle mediator of the inflammatory response to
tissue damage (21-23). PGE, also stimulates tumor cell
proliferation and differentiation as well as tumor-associated
neovascularization (24,25). Therefore, the agents which
decrease the production of either NO or PGE, could be
candidates of the chemopreventive agents.

Seaweeds, primary producers of the oceans, have served
as human foodstuff, medicine, manure, animal fodder, and
s0 on since ancient times. Korean people often had eaten
either raw or cooked seaweeds which also have been
proved as a rich source of structurally novel and biological
active secondary metabolites (26). Chemopreventive effects
of the seaweeds, however, have not been well-studied. The
objectives of this study were to evaluate the chemopreventive
potential of Korean seaweed exfracts by measuring key
chemopreventive effects including phase II detoxification
enzyme induction and anti-inflammatory responses in
animal cell culture system. Most putative chemopreventive
agents, rather than having a single target, possess pleiotropic
properties, and work via multiple mechanisms of action
(1). Consequently, the agents that have abilities both
detoxification of carcinogen and inhibition of inflammation
could be highly effective for cancer chemoprevention.

Materials and Methods

Seaweed materials The 30 marine algae species used for
this study were collected from December 2005 to May
2006 along the eastern and southern coast of South Korea.
Samples collected were immediately transported to the
laboratory and gently rinsed with filtered fresh water, dried
under shade, and stored in a refrigerator until experiments
were processed. Identification of seaweeds was performed
by Professor Hyung-Seop Kim. The family, the scientific
name, the local name, the collection time, and frequent
uses in the traditional medicine systems for each tested
species are summarized in Table 1 if they exist.

Preparation of 30 seaweed extracts Dried seaweed
powder was extracted 3 times with 95% ethanol at room
temperature. The ethanol extract was obtained after
evaporation of solvent and the each weight was measured.
The dry weight, the solvent used for extraction, and the
weight of extract were listed in Table 1.

Cell culture HepG2 cells, Hepalclc7 cells, and RAW264.7
cells were obtained from the American Type Culture
Collection (ATCC, Rockville, MD, USA). These cells
were maintained at subconfluence in 95% air and 5% CO,
humidified atmosphere at 37°C. Dulbecco’s modified Eagle
medium (DMEM, Hyclone, Logan, UT, USA) was used
for HepG2 cells and RAW264.7 cells cultivation and o-
Minimum Essential medium {a-MEM, Hyclone) for
Hepalclc7 cells cultivation. They were supplemented with
10% fetal bovine serum (FBS, Hyclone), penicillin (100
units/mL), and streptomycin (100 pg/mL).

Cell viability The cytotoxicity of seaweed extracts was
evaluated using the Cell Counting kit (CCK-8; Dojindo
Laboratories, Tokyo, Japan). In brief, 1x10* cells per well
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were plated into 96-well plates, incubated at 37°C for 24 hy,
and given a fresh change of medium. Cells were then
treated with various concentrations of extracts and incubated
at 37°C for an additional 24 hr. At that point, 10 pL of the
CCK-8 solution was added to the wells and incubation was
continued for another 1 hr. The absorbance at 450 nm was
measured and the absorbance at 600 nm was subtracted
using a PowerWave™ XS Microplate Spectrophotometer
microplate reader (Bio-Tek Instruments, Winooski, VT,
USA). Data were reported as percent cell growth relative to
respective controls {cells treated with solvent only) for
each sample concentration.

Quinone reductase assay The QR induction activities
were determined by Prochaska modified bioassay with a
little modification (7). Hepalclc7 cells (1x10* cells per
well) were plated into 96-well plates (Techo Plastic
Products AG, Trasadingen, Switzerland) and incubated for
24 hr prior to treatments. Growth media containing 2.5 uM
sulforaphane were used as positive controls. The treated
cells were rinsed with phosphate buffered saline (pH 7.4),
lysed with 80 pL. of 0.08% digitonin in 2 mM ethylenediamide
tetraacetic acid (EDTA), incubated for 30 min, and
subjected to QR assay. Protein content was measured in a
20 uL aliquot of the digitonin cell lysate in a separate 96-
well plate. Total protein content was measured by Bio-Rad
protein assay (Bio-Rad Laboratories, Hercules, CA, USA).
A 200 pL aliquot of mixed solution [49 mL of 25 mM Tris
buffer; 34 mg of bovine serum albumin (BSA); 0.34 mL of
1.5% Tween-20 solution; 0.34 mL of thawed cofactor
solution (150 mM glucose-6-phosphate, 4.5 mM nicotinamide
adenine dinucleotide phosphate (NADP), 0.75 mM flavin
adenine dinucleotide (FAD) in Tris buffer); 100 units of
glucose-6-phosphate dehydrogenase; 15mg of 3-(4,5-
dimethylthiazo-2-y1)-2,5-diphenyletrazolium bromide (MTT);
and 50 pL of 50 mM menadione in acetonitrile] was added
into a 50 uL aliquot of cell lysates. The absorbance at
610 nm was measured 5 times at intervals of 50 sec using
a PowerWave™ XS Microplate Spectrophotometer
microplate reader (Bio-Tek Instruments). Induction of the
QR activity was calculated by comparing the QR specific
activity of compound treated cells with that of control
treated cells. Enzyme activity was expressed as quinone
reductase activity (CD), concentration required to double
QR activity. Chemoprevention index (CI) is obtained by
dividing ICs values (concentration for 50% inhibition of
cell viability) by CD values.

Transient transfection and ARE/XRE activation assay
using CAT-ELISA  HepG?2 cells (1x10° cells/ mL) were
cultured in 24-well tissue culture plates for 24 hr before
transfection at 70-80% confluency. Cells were transiently
co-transfected with 2.5 g of one of two different reporter
constructs containing either the antioxidant response
element (ARE QR-CAT) or the xenobiotic response element
(XRE QR-CAT) derived from the rat QR gene (24). All
CAT reporter gene constructs were gifts from Dr. Cecil
Pickett (Schering-Plough Research Institute, Kenilworth,
NJ, USA). After 24 hr treatment, cells were lysed and
assayed for CAT expression using a CAT-ELISA kit (Roche
Biochemicals, Indianapolis, IN, USA), following the
manufacturer’s instructions. 3-Methylcholanthrene (Sigma-
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Aldrich, St. Louis, MO, USA), a typical XRE activator,
was used as a positive control in this experimental system.
CAT expression was normalized with respect to protein
concentration, which was determined with the Bicinchoninic
acid protein assay kit (Sigma-Aldrich) and presented as
fold induction over the control.

Measurement of nitrite production using Griess reagent
For the assay of NO production, RAW264.7 cells were
plated in 24-well plates at a density of 2x10° cells/well in
0.5ml. DMEM. After 24 hr incubation, culture media
were replaced with fresh DMEM containing 10% FBS,
and the samples were treated. After 4 hr incubation, the
cells were stimulated with 10 pg/ml iipopolysaccharide
(LPS) and 10 units/mL interferon-y (IFN-y), and incubated
for 16 hr at 37°C. NO production in culture supernatant
was spectrophotometrically evaluated by measuring nitrite,
an oxidative product of NO. Nitrite was determined with
the Griess reaction (8) by mixing 100 uL of culture
supernatant with 100 uL of Griess reagent containing equal
volumes of 1% sulphanilamide in 5% phosphoric acid and
0.1% H-(1-naphthyl)ethylenediamine solution. The absorbance
at 540 nm was measured with a PowerWave™ XS (Bio-
Tek Instruments). The value was calculated as percent NO
production relative to respective controls {cells stimulated
with 10 pg/mL LPS and 10 units/mL IFN-y) for each sample
concentration. Then, data were normalized for viable cell
number percentage assessed by the cell viability assay.

Measurement of PGE, production by enzyme-linked
immunoserbent assay (ELISA) PGE, production was
measured in culture medium in order to determine COX-2
activity. For the assay of COX-2 induction, RAW264.7
cells were plated in 24-well plates at a density of 2x10°
cells/well in 0.5 mL DMEM. After 24 hr incubation, the
samples were treated. After 4 hr incubation, the cells were
stimulated with 10 pg/mL LPS and 10 units/mL IFN-~y, and
incubated for 16 hr at 37°C. After the treatment, the PGE,
ELISA was performed according to the manufacturer’s
protocol (R&D Systems, Minneapolis, MN, USA). The
absorbance in each well was measured at 450 nm and the
absorbance at 540 nm was subtracted with a PowerWave™
XS (Bio-Tek Instruments).

Resuits and Discussion

Chemoprevention index (CI) of seaweed extracts in
Hepalcle7 cells Many different methods for the
determination of cancer chemopreventive effects have been
developed and used to screen potential chemopreventive
activity,. The screening for the induction of phase II
detoxification and for the inhibition of inflammatory
mediators in our experiment was successfully used to
systematically assess the cancer chemopreventive effects of
the natural products. However, the cancer chemopreventive
effect of seaweed extracts was not clarified yet, comparing
it with a lot of biological activities of the seaweeds. A
number of previous studies have suggested that induction
of phase I detoxification enzymes including quinone
reductase (NQO1), glutathione-s-transferase (GST), ghutathione
reductase, glucose-6-phosphate dehydrogenase, and epoxide
hydrolase is a relevant mechanism for cancer chemoprevention
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%).

To determine the ability of seaweed extracts to induce
the quinone reductase, dose-dependent experiments were
performed in mouse hepatocarcinoma Hepalcic7 cells.
Table 2 summarizes the quinone reductase activity (CD),
cytotoxicity (ICsq), and CI of the seaweed extracts. QR
specific activity in Hepalclc7 cells was measured after
24 hr treatment of the seaweed extracts in the broad range
of concentrations (6.25-200 pg/mL). The CI is known to
be a useful marker for the screening of potential
chemopreventive agents showing a high QR activity with a
low cytotoxicity. Among 30 seaweed extracts, C. cylindrica
showed the highest CI value (4.7) resulted from that ICsp
value was larger than 200 pg/mL and a CD value was
429 ng/ml. Although D. coreacea showed a higher QR
activity than C. cylindrical, Cl value was relatively low
(4.4) due to a high cytotoxicity (64.1 ug/mL). In addition,
Ulva armoricana and Undaria pinnatifida showed a
relatively high QR induction with a CD value less than
100 ug/mL and no cytotoxicity, and the CI value were 2.2
and 2.6, respectively (Table 2). Among the exiracts, 4
seaweed extracts including U. armoricana, C. cylindrical,
U. pinnatifida, and D. coriacea were used for searching
potential monofunctional inducers.

Activation of ARE by 4 seaweed extracts in HepG2
cells The promoters of genes encoding phase 1 detoxification
enzymes have 2 important response elements called ARE
and XRE responding to various chemopreventive agents
(8,27). The compounds that stimulate both XRE- and ARE-
driven gene expression are designated as ‘bifunctional
inducers’ (2). In contrast, the compounds that transcriptionally
activate genes through ARE, but not XRE, are designated
as ‘monofunctional inducers’ (2). The induction of phase I
enzymes, such as cytochrome P450 isozymes which have
XRE but not ARE, is required for metabolic disposal of
xenobiotics (28) but is also considered as a risk factor due
to the potential of activating procarcinogens (29). Therefore,
the activation of ARE, not XRE, appears to be the common
anticancer mechanism of detoxification enzyme.

To determine the ability of 4 seaweed extracts to induce
ARE- or XRE-driven gene expression, we transiently
transfected human hepatocarcinoma HepG2 cells with a
CAT reporter construct containing either the ARE consensus
(ARE QR-CAT) or XRE consensus (XRE QR-CAT). The
CAT activity was measured after 24 hr treatment of
extracts (1, 10, and 100 pg/mL). In U. armoricana treated
cells, ARE was significantly activated and the maximum
level was already reached at 1 pug/mL. In D. coreacea and
C. cylindrica treated cells, ARE was significantly activated
in a dose-dependent manner, while XRE was not activated
at any of the concentrations tested (Fig. 1). From these
results, U. armoricana, D. coreacea, and C. cylindrica
extracts might be contained compounds which could be the
monofinctional inducers. There results imply that the extracts
may have the compounds exerting their chemopreventive
effects through an ARE-dependent mechanism regulating
anticancer-related genes encoding detoxification and
antioxidant enzymes (Fig. 1). Those seaweeds have not
been used for traditional medicine (Table 1), so that they
could be promising candidates for developing as nutraceuticals
for cancer chemoprevention.
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Table 2. Cytotoxicity and chemoprevention index (CI) of seaweed extracts in Hepalclce7 cells and cytotoxicity in RAW264.7 cells

Hepalclc7 RAW264.7
Family Scientific name cD ICso P 1Cso
(ug/mL)?  (ug/mL)” (ng/mLy?
Ulvaceae Enteromorpha intestinalis (Linnaeus) Nees no induction 179.9 0.0 165.7
Enteromorpha linza (Linnacus) J. Agardh 112.6 200<¥ 1.8 200<
Ulva armoricana P. Dion, B. de Reviers & G. Coat 91.4 200< 22 200<
Ishigeaceae Ishige okamurae Yendo no induction 200< 0.0 1944
Scytosiphonaceae Cutleria cylindrica Okamura 42.9 200< 4.7 200<
Seytosiphon lomentaria (Lyngbye) Link no induction  200< 0.0 200<
Desmarestiales Desmarestia ligulata (Stackhouse) Lamouroux no induction 68.3 0.0 200<
Desmarestia viridis (Miiller) Lamouroux 96.9 168.9 L7 36.7
Alariaceae Undaria pinnatifida (Harvey) Suringar 75.9 200< 2.6 200<
Laminariaceae Agarum cribrosum Bory no induction 200< 0.0 200<
Costaria costata (C. Agardh) Saunders no induction 200< 0.0 200<
Eckionia cava Kiellman in Kjellman et Petersen 561.1 200< 04 1523
Laminaria japonica Areschoug no induction 76.73 0.0 114.2
Dictyotaceae Dictyopteris divaricata (Okamura) Okamura 262.3 120.5 0.5 200<
Dictyopteris pacifica (Yendo) Hwang et al. no induction 122.8 0.0 200<
Dictyota coriacea (Holmes) Hwang et Kim comb. Nov. 14.7 64.1 44 200<
Pardina arborescens Holmes no induction 200< 0.0 200<
Sargassaceae Hizikia Fusiformis (Harvey) Okamura no induction 200< 0.0 200<
S. confusum C. Agardh no induction 200< 0.0 189.5
S. horneri (Turner) C. Agardh no induction 128.0 0.0 200<
S. miyabei Yendo 480.1 200< 1.0 200<
S. yezoense (Yamada) Yoshida et T. Konno no induction 392 0.0 200<
S. thunbergii (Mertens ex Roth) Kuntze no induction 115.1 0.0 1347
Bonnemaisoniaceae  Bownemaisonia hamifera Hariot 360.3 131.5 0.4 236
Halymeniaceae Carpopeltis cornea {Okamuray Okamura 2273 200< 0.9 200<
Phacelocarpaceae Gracilaria textorii (Suringar) Hariot no induction 200< 0.0 200<
Gracilaria verrucosa (Hudson) Papenfuss no induction 200< 0.0 200<
Delesseriaceae Delesseria serrulata Harvey no induction 1743 0.0 200<
Rhodomelaceae Laurencia nipponica Yamada no induction 200< 0.0 200<
Polysiphonia morrowii Harvey no induction 69.5 0.0 200<

DConcentration required to double QR activity.
2Concentation required to inhibit celt growth by 50%.
IChemoprevention index=ICs¢/CD.

“The highest limit of test concentration was 200 pg/mL; if the extract has no toxicity, 200 pg/mL is used for CI value.

Inhibition of NO production in RAW264.7 cells In
order to evaluate the anti-inflammatory capacity of seaweed
extracts, NO accumulation was examined in culture medium
of LPS/IFN-y-stimulated RAW264.7 cells. We first performed
the experiments 1o determine whether seaweed extracts
affect NO production in RAW264.7 cells. Cells were
stimulated with both LPS and IFN-y in the presence or
absence of 30 seaweed extracts for 16 hr, and the levels of
NO were measured in the culture medium by Griess reagents.
LPS/IFN-y-stimulated cells increased the accumulation of
nitrite, a stable oxidized product of NO in the culture
medium while control cells did not (Fig. 2). Decreased NO
production was observed in most of seaweed extracts-
treated cells (20 pg/mL) compared to LPS/IFN-y-stimulated
cells (Fig. 2). Especially, I okanurae, Scytosiphon lomentaria,
D. ligulata, D. viridis, D. divaricata, D. coriacea, S.
horreri, and S. yezoense-treated cells showed a marked
decrease in NO production. Therefore, 8 seaweed extracts

were selected by inhibition ability for NO production. LPS/
[FN-y-stimulated NO productions were significantly
decreased in a dose-dependant manner by co-treatment
with 8 seaweed extracts at 53-20 pg/mL (Fig. 3).

Inhibition of PGE; production in RAW264.7 cells The
effect of seaweed extracts on the level of PGE, in the LPS/
IFN-y-stimulated RAW264.7 cells was examined. PGE,
concentration was measured under the same experimental
conditions as NO production assay in the culture medium
by using ELISA kit, and was normalized with total protein
concentration by BCA protein assay. As shown in Fig, 4,
the levels of PGE, increased in LPS/IFN-y-treated cells
while the control did not. Decreased PGE,; production was
observed in several seaweed extract-treated cells (50 pg/
mL) (Fig. 4). Especially, I okamurae, D. ligulata, D. viridis,
D, divaricata, D. coriacea, S. horneri, and S, yezoense-
treated cells showed a marked decrease in not only PGE,
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expression by seaweed extracts in HepG2 cells. The cells were

transfected with either ARE QR-CAT (A) or XRE QR-CAT (B) construct for 24 hr. CAT expression was normalized using the protein
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positive control for XRE activation. The bars marked with an asterisk are significantly different from control (*p<0.05; **p<0.01) using

Student’s ¢ test, with #=3.
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Fig. 2. Effects of 30 seaweed extracts on NO production in RAW264.7 cells stimulated with 10 ug/mL LPS and 10 units/mL IFN-
y. The concentration of seaweed extracts was 20 pg/mL (d.w./mL), and dexamethasone was treated with 20 uM. The asterisks are
significantly different from LPS and [FN-y stimulated RAW264.7 cells (**p<0.01; ***p<0.005) using Student’s ¢ test, with n=3.

but also NO production. In these seaweed extract-treated
cells, PGE, production was significantly decreased in does-
dependent manner at 5-20 pg/mL (Fig. 5).
Immune-activated macrophages up-regulate the expression
of the inflammatory enzymes, such as iNOS and COX-2;
these enzymes synthesize NO and PGE; from L-arginine
and arachidonic acid, respectively. Therefore, decrease of
both NO and PGE; in seaweed extracts-treated RAW264.7
cells could be an index of the anti-inflammatory ability. In
addition, iNOS and COX-2 are regulated by nuclear factor-

kB (NF-kB) which is a transcriptional factor that acts as a
central mediator of the human immune response and controls
the expression of various genes involved in inflammation
and proliferation (30). Seaweed extracts of I okamurae, D.
ligulata, D. viridis, D. divaricata, D. coriacea, S. horneri,
and S. yezoense showed strong inhibition on both NO and
PGE, production. Therefore, some bioactive components
present in those seaweeds may inhibit NF-xB activation
and decrease the level of iNOS and COX-2 expression in
LPS/IFN-y-stimulated cells. D. coriacea extract-treated
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cells showed the lowest CD value, 14.687 ug/mL, which is
required to double QR activity, and also showed a significant
ARE activation in transiently transfected HepG2 cells. In
addition, D. coriacea extract significantly down-regulated
the production either of NO or of PGE, in the murine
macrophage cell line RAW264.7. These observations suggest
that D. coriacea could be developed as nutraceuticals for
cancer chemoprevention having dual functions which are
induction of phase 1T detoxification enzyme and inhibition
of inflammatory mediators.

In conclusion, the results clearly indicated that the 30
species of seaweeds tested in this study showed various
degrees of induction of phase II detoxification enzyme and
inhibition of the production of inflammation mediators,
NO and PGE,. Up to date, there has been no direct linkage
established for seaweeds exerting cancer chemopreventive
activities. Thus, the results presented in this report will
provide useful guidelines that make it possible to identify
the marine algal extracts in respect to their cancer
chemopreventive effects. Further work is under way in our
laboratory which is aimed at detailed investigation and
characterization of the biologically active molecules that
are responsible for the cancer chemopreventive effects
found in this study.
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