• Title/Summary/Keyword: Response technology

Search Result 9,351, Processing Time 0.036 seconds

Development of Polarization Mode Dispersion Compensator with a response time less than 200ms (응답 속도 200ms 이하의 편광모드분산 보상기 개발)

  • Seo Jae-Eun;Kim Sang-In;Jeoug Ki-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.47-48
    • /
    • 2003
  • A polarization mode dispersion(PMD) compensator with a reponse time less than 200ms has been developed. In our PMD compensator, a reset-free $LiNbO_3$ polarization controller was used in order to reduce the response time, and the compensation algorithm was based on maximization of degree of polarizaiton(DOP).

  • PDF

Carrying Out the Method of Steepest Ascent in a Response Surface Experiment with Split-Plot Structure (분할법 구조를 갖는 반응표면 실험에서 최대경사법 수행 방법)

  • Lee, Jong-Seong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.27-31
    • /
    • 2011
  • In many industrial experiments, some practical constraints often force factors in an experiment to be much harder to change than others. Such an experiment involves randomization restrictions and it can be thought of as split-plot experiment. This paper investigates the path of steepest ascent/descent within a split-plot structure. A method is proposed for calculating the coordinates along the path.

  • PDF

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

Different Phosphate Transport in the Duodenum and Jejunum of Chicken Response to Dietary Phosphate Adaptation

  • Fang, Rejun;Xiang, Zhifeng;Cao, Manhu;He, Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1457-1465
    • /
    • 2012
  • Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low-(TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

A Study on the Light Weighting of APU through Structural Analysis (구조해석을 통한 보조발전기 경량화에 관한 연구)

  • Kim, Hye-Eun;Kim, Jin-Hoon;Noh, Sang-Wan;Kim, Byeong-Ho;Baek, Hyun-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.