• Title/Summary/Keyword: Response systems

Search Result 5,605, Processing Time 0.033 seconds

A Study on Probabilistic Response-time Analysis for Real-time Control Systems (실시간 제어시스템의 확률적 응답시간 해석에 관한 연구)

  • Han, Jae-Hyun;Shin, Min-Suk;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2006
  • In real-time control systems, the traditional timing analysis based on worst-case response-time(WCRT) is too conservative for the firm and soft real-time control systems, which permit the maximum utilization factor greater than one. We suggested a probabilistic analysis method possible to apply the firm and soft real-time control systems under considering dependency relationship between tasks. The proposed technique determines the deadline miss probability(DMP) of each task from computing the average response-time distribution under a fixed-priority scheduling policy. The method improves the predictable ability forthe average performance and the temporal behavior of real-time control systems.

Design of 5kWh Flywheel Energy Storage System to Improve Dynamics (5kWh Flywheel 에너지저장장치 시스템의 동특성 향상 설계)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong;Lee, Sung-Whee;Yun, Dong-Won;Han, Young-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.99-106
    • /
    • 2008
  • 5kWh FESS(Flywheel Energy Storage System) using AMB(Active Magnetic Bearing) has been under development and 1st trial system has been finished and run the operating test. Unfortunately, the test result was not satisfactory because FESS could increase the rotational speed up to 9,000 rpm only although the target rotational speed is 18,000rpm. It's because 1st bending mode frequency of flywheel shaft was too low and imbalance response was too big. To achieve the target speed, 1st bending mode and imbalance response must be improved and the whole FESS needed to be designed again. This paper presents the newly designed FESS and what has been changed from the 1st trial FESS to improve 1st bending mode and imbalance response. The experimental results to see how much 1st bending mode frequency was improved are presented, too.

T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters (T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화)

  • Kim, Jae-Hun;Park, Chang-Woo;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.270-275
    • /
    • 2005
  • This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Doffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.

Thermal Response Analysis of a Low Thermal Drift Three-axis Accelerometer for High Temperature Environments

  • Ishida Makoto;Lee Kyung Il;Takao Hidekuni;Sawada Kazuaki;Seo Hee Don
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.872-875
    • /
    • 2004
  • In this paper, thermal response analysis of a temperature controlled three-axis accelerometer for high temperature environments with integrated micro-heaters and temperature sensors is investigated with finite element method (FEM) program, ANSYS and infrared thermal measurement systems. And availability to application fields from a viewpoint about short thermal response time is discussed. In this paper, the time of three-axis accelerometer for high temperatures becoming $300^{\circ}C$ by integrated micro-heaters and temperature sensors to reduce thermal drift characteristics was analyzed as a thermal response time of this device. The simulated thermal response time (time until SOI piezoresistors actually becomes $300^{\circ}C$) of three-axis accelerometer for high temperatures with ANSYS is about 0.6s, and measured result with infrared temperature measurement systems is about 0.64s. Experimental results using infrared thermal measurement systems agreed well with these theoretical results.

  • PDF

Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests (가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교)

  • Son, Young-Kap;Jang, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

윈도우즈 GUI 환경을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발

  • 이용희;김석일;이재윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.836-840
    • /
    • 1995
  • Recently, the motor-integrated spindle spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI encironment.

  • PDF

Locating Idle Vehicles in Tandem-Loop Automated Guided Vehicle Systems to Minimize the Maximum Response Time

  • Lee, Shiwoo
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.125-135
    • /
    • 2007
  • An automated guided vehicle (AGV) system is a group of collaborating unmanned vehicles which is commonly used for transporting materials within manufacturing, warehousing, or distribution systems. The performance of an AGV system depends on the dispatching rules used to assign vehicles to pickup requests, the vehicle routing protocols, and the home location of idle vehicles, which are called dwell points. In manufacturing and distribution environments which emphasize just-in-time principles, performance measures for material handling are based on response times for pickup requests and equipment utilization. In an AGV system, the response time for a pickup request is the time that it takes for the vehicle to travel from its dwell point to the pickup station. In this article, an exact dynamic programming algorithm for selecting dwell points in a tandem-loop multiple-vehicle AGV system is presented. The objective of the model is to minimize the maximum response time for all pickup requests in a given shift. The recursive algorithm considers time restrictions on the availability of vehicles during the shift.

Desirability Function Modeling for Dual Response Surface Approach to Robust Design

  • Kwon, You Jin;Kim, Young Jin;Cha, Myung Soo
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • Many quality engineering practitioners continue to have a considerable interest in implementing the concept of response surface methodology to real situations. Recently, dual response surface approach is extensively studied and recognized as a powerful tool for robust design. However, existing methods do not consider the information provided by customers and design engineers. In this regard, this article proposes a flexible optimization model that incorporates that information via desirability function modeling. The optimization scheme and its modeling flexibility are demonstrated through an illustrative example by comparing the proposed model with existing ones.

A Study on the Utilization of Disaster-Ethnography for Disaster Response - a study on the planning the Kobe Earthquake - (재난대응 고도화를 위한 재해에스노그래피 활용방안 연구 - 일본 고베지진 사례를 중심으로 -)

  • Park, Young-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.123-126
    • /
    • 2008
  • This research develops a methodology for standard design of spatial Database utilizing the disaster ethnography. Especially, the disaster response operation is sensitive to the size of the disaster, location, damage situation, resource a variability, etc. Moreover, there are many unknown and unexpected factors that will affect the disaster response strategy. But, the future Crisis Management Systems is needed that past disaster teaching. In another words, from now on the response systems need to prepare several scenarios and spatial data and manual etc. before the disaster. Then, this research is the experimental research which examined the relationship between the disaster-ethnography and the GIS spatial data of disaster.

  • PDF

Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues

  • Bae, S.H.;Jeong, W.B.;Cho, J.R.;Lee, J.H.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • This paper presents the time response of a mixed vibration system with the viscous damping and the hysteretic damping. There are two ways to derive the time response of such a vibration system. One is an analytical method, using the contour integral of complex functions to compute the inverse Fourier transforms. The other is an approximate method in which the analytic functions derived by Hilbert transform are expressed in the state space representation, and only the effective eigenvalues are used to efficiently compute the transient response. The unit impulse responses of the two methods are compared and the change in the damping properties which depend on the viscous and hysteretic damping values is investigated. The results showed that the damping properties of a mixed damping vibration system do not present themselves as a linear combination of damping properties.