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Abstract. An automated guided vehicle (AGV) system is a group of collaborating unmanned vehicles which is 
commonly used for transporting materials within manufacturing, warehousing, or distribution systems. The 
performance of an AGV system depends on the dispatching rules used to assign vehicles to pickup requests, the 
vehicle routing protocols, and the home location of idle vehicles, which are called dwell points. In manufacturing 
and distribution environments which emphasize just-in-time principles, performance measures for material 
handling are based on response times for pickup requests and equipment utilization. In an AGV system, the 
response time for a pickup request is the time that it takes for the vehicle to travel from its dwell point to the 
pickup station. In this article, an exact dynamic programming algorithm for selecting dwell points in a tandem-
loop multiple-vehicle AGV system is presented. The objective of the model is to minimize the maximum 
response time for all pickup requests in a given shift. The recursive algorithm considers time restrictions on the 
availability of vehicles during the shift. 
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1.  INTRODUCTION 

A flexible manufacturing system consists of a group 
of material processing cells connected by an automated 
material handling system to manufacture a wide variety 
of different products with low-to-medium volume. Among 
various material handling systems that are employed in 
flexible manufacturing environments today, automated 
guided vehicle (AGV) systems have acquired greater 
importance and attention. An AGV system features bat-
tery-powered and driver-less vehicles moving on a lay-
out of guide paths. Each vehicle has programming capa-
bility for path and location selection, and can be recon-
figured easily to accommodate changes in pro-duction 
volume, product mix, product routing, and equipment 
interfacing requirements (Rajotia et al. 1998). 

Achievements of high flexibility and high perform-
ance in an AGV system are related to several design and 
control issues. Many studies have been done to address 
some of these issues. These problems include (i) guide 
path layout design and location selection of 
pickup/dropoff (P/D) stations (Egbelu 1993), (ii) vehicle 
scheduling and dispatching, (iii) traffic control and ve-

hicle routing, (iv) determination of the number of neces-
sary vehicles, and (v) home location selection for idle 
vehicles (Lee and Ventura 2001, Ventura and Lee 2001, 
Ventura and Rieksts 2006).    
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Figure 1. Example of a Conventional network layout with 
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There are several AGV guide path layouts which 
have been proposed in the literature. The conventional 
network layout usually employs a general or grid net-
work layout with unidirectional guide paths. A typical 
conventional network layout is shown in Figure 1. Be-
cause of intersections in the layout, a complex control 
scheme is required to avoid deadlocks and congestion. 
Egbelu and Tanchoco (1986) proposed the single-loop 
layout for an AGV system. As shown in Figure 2, a 
typical single-loop layout contains a unidirectional gui-
de path with one or more AGVs. An important advan-
tage for using the single-loop layout is the simplicity of 
traffic control, where neither deadlock nor collision ex-
ists.  
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Figure 2. Example of a single-loop layout with 8 pickup 

stations 

The single-loop layout also needs a shorter length 
of guide path than other layouts, which may reduce the 
significant capital cost of installation. The disadvan-
tages are long vehicle travel times and difficulties in 
reconfiguration upon system changes (Ross 1996, Sin-
riech 1995). To overcome the disadvantages of the sin-
gle loop layout, Bozer and Srinivasan (1992) proposed 
the tandem loop layout, consisting of non-overlapping 
single-vehicle bidirectional loops (see Figure 3). Mate-
rial transfer between loops is completed at pre-de-
termined locations (or transfer ports) through transfer 
devices such as conveyors, gravity rails, AGVs, etc. 
There have been many studies on partitioning P/D sta-
tions into multiple tandem loops. By having one vehi-
cle per loop, this layout is also free of congestion and 
deadlocks. An advantage over the single loop layout is 
the shorter travel distance of vehicles due to smaller 
loops and bidirectional guide path. However, a signifi-
cant potential of system failure exists because of the 
condition that each loop must have only one vehicle. It 
makes the failure of a single vehicle directly to risk the 
integrity of the system operation. Partitioning of a large 
loop into smaller loops must be carefully designed, so 
that each vehicle can cope with the workload associ-
ated with its loop. In addition, interloop traffic tends to 
rapidly increase with a growing number of loops in the 

system, which may jeopardize the system performance. 
The disadvantages of the tandem loop layout indicate 
that there is an optimal partitioning level for every sys-
tem (Sinriech and Tanchoco 1992). 
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Figure 3. Example of a tandem-loop layout with 8 pickup 
stations 

 
Ventura and Lee (2001) proposed a system of tan-

dem-loops with multiple-vehicles (TLMV) to avoid sys-
tem interruptions that could be caused by a single vehi-
cle failure in the tandem-loop layout. Like the tandem-
loop layout, the TLMV system consists of non-overlap-
ping loops and transfers between adjacent loops occur at 
transfer ports. In this research, a transfer port is either 
placed at an existing P/D station or converted to an addi-
tional P/D station acting as a pickup station for incom-
ing traffics and a dropoff station for outgoing traffics. 
The TLMV system may contain more than one AGV in 
each loop and a unidirectional guide path is usually em-
ployed to avoid collisions. However, with some buffer-
ing space (Egbelu 1993), a bidirectional guide path can 
be implemented as well. The TLMV system can evenly 
distribute the workload among AGVs by assigning an 
adequate number of vehicles to each loop. 

Unless an AGV system is overloaded, the occur-
rence of vehicle idleness is an inevitable event (Egbelu 
1993). Vehicle idleness occurs whenever a vehicle com-
pletes a P/D task and there is neither immediate nor 
pending pickup request. Under the dwell point position-
ing rule, when a vehicle becomes idle, it moves to its 
home location (dwell point), and waits there until a new 
P/D task is assigned to the AGV. Optimal dwell points 
are determined by assigning P/D stations to vehicles so 
that the maximum vehicle response time or the mean 
vehicle response time is minimized. The response time 
is defined as the time elapsed from the moment the ve-
hicle is assigned to a P/D task until the time instance in 
which the vehicle reaches the pickup station. Ventura 
and Lee (2001) performed a simulation and a cost analy-
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sis on the four basic types of layouts: conventional net-
work layout, single loop layout, tandem loop layout, and 
TLMV layout. They concluded the unidirectional TLMV 
layout gave the best performance with reasonable instal-
lation and operating costs. Ventura and Lee performed a 
second simulation study comparing three idle vehicle 
positioning rules in an AGV system with TLMV layout. 
They concluded that the dwell point positioning rule 
outperformed the circulatory loop positioning rule and 
the point-of-release positioning rule. In the circulatory 
loop positioning rule, idle vehicles circulate around their 
pre-assigned loop until they are reassigned to a new task. 
Upon the completion of a P/D task, under the point-of-
release positioning rule, the vehicle remains at the drop-
off station until it is reassigned to another task. Ventura 
and Rieksts (2006) studied optimal locations of dwell 
points in a single-loop AGV system with time restric-
tions on vehicle availability. 

In this article, a polynomial-time dynamic program- 
ming (DP) algorithm for determining dwell points for an 
AGV system with a TLMV layout is presented. The al-
gorithm considers time constraints concerning the ve-
hicle availability per shift. The recursive algorithm pro-
vides an exact solution to the problem of minimizing the 
maximum response for all requests in a shift.  

Section 2 introduces the necessary notation and as-
sumptions to formulate the problem as an integer non-
linear program. The proposed DP algorithm and an illu-
strative example are provided in Sections 3 and 4, re-
spectively. The conclusions of this research are summa-
rized in Section 5. 

2. PROBLEM DESCRIPTION 

In the TLMV layout under consideration, a station 
will send a pickup request to the controller and the con-
troller will dispatch an AGV, which has been pre-
assigned to a set of consecutive stations, if it is available. 
Otherwise, the controller will delay the dispatching or-
der until the AGV becomes available. The dispatched 
vehicle will pick up the job (a unit load of parts) and 
deliver it to the dropoff station. Upon completion of the 
task, the vehicle will return to its dwell point and wait 
until it is reassigned to another request. When the pic-
kup and dropoff stations belong to the same loop, the 
task is completed by a single AGV without transfers 
between tandem loops. Such a trip is defined as intra-
loop travel. When pickup and dropoff stations belong to 
different loops, an AGV first travels to the pickup sta-
tion and moves the job to an appropriate transfer port. A 
transfer device then moves the job to another loop and 
an AGV in the second loop needs to pickup the job at 
the transfer port, and so on. The process continues until 
the job reaches its destination loop. Such a trip is de-
fined as interloop travel. For this interloop travel, a con-
trol issue needs to be resolved concerning the routing of 

the job from pickup stations to dropoff stations. In inter-
loop travel, the incoming traffic from the previous loops 
through transfer devices will become additional pickup 
requests in the successive loops. This additional traffic 
can create congestion problems if routing protocols are 
not well-planned. A similar situation occurs in Internet 
routing. There have been extensive studies on how to 
get data packets to destinations in the Internet, which is 
similar to getting loaded vehicles to dropoff stations in 
the TLMV system. This process is a great burden for the 
central controller that needs to figure out the shortest 
routing between each pair of P/D stations, especially in 
a dynamic situation like the Internet. In the TLMV sys-
tem considered in this research, the layout is static over 
the time and it is feasible for the controller to keep the 
routing information between any pair of stations. There-
fore, each dispatched vehicle knows the intermediate 
loops to get to the destination station in advance, which 
is called source routing in communication networks. 
The initial routing information can be obtained by a 
shortest-path algorithm for the best efficiency. The con-
troller in the TLMV system should update the routing 
information to detour upon system changes due to trans-
fer device failures or traffic congestion. 

By having a side track at each P/D station and 
transfer port in the TLMV system, no vehicle inter-fe-
rence will take place. For control simplicity, it is as-
sumed that a job can be picked up and another job deliv-
ered simultaneously at any station. When a tandem loop 
layout is given, there are n(k) P/D stations and p(k) trans-
fer ports in loop k. As noted above, p(k) transfer ports are 
converted to additional P/D stations in loop k by being 
pickup stations for the incoming traffics and being dro-
poff stations for the outgoing traffics, so that there exist 
m(k) = n(k)+p(k) stations in loop k. These P/D stations 
(including transfer ports) are denoted as vi

(k) for the lo-
cation of station i in loop k and xj

(k) as the location of 
dwell point j in loop k. In addition, let fij

(k), i ≠ j, denote 
the number of pick-up requests from vi

(k) to vj
(k) per shift,  

fi
(k) =

( )

( )

{ }
k

k

ij

j M i

f
Î -

å the number of pickup requests from  

vi
(k) per shift, and f(k) =

( )

( )

k

k

i

i M

f
Î

å the total number of  

pick-up requests per shift in loop k, where M(k) = {1, 2, 3, 
…, m(k)}. A unidirectional single loop layout can be 
modeled as a digraph G(k) = (V(k), A(k)), where V(k) = 

{v1
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(k), …, ( )

( )

k

k

m
v } is the set of nodes and A(k) = 
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, ( )

( )

k

k

m
v ), ( ( )
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m
v , v1

(k))} 

is the set of arcs. Let X(k) = {x1
(k), x2

(k), …, ( )

( )
k

k

h
x } be a 

set of h(k) dwell points of AGVs in G(k). For simplicity, 
all stations and dwell points can be labeled sequentially 
in the direction of movement without loss of generality.  

The distance between locations vi
(k) and vj

(k) in loop 
k is denoted as d(vi

(k), vj
(k)) and is unique because of the 
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unidirectional movement. Ventura and Rieksts (2006) 
assumed constant AGV speeds between two locations. 
This assumption is extended in this study, so that a vehi-
cle is accelerated to a certain maximum speed smax at a 
rate of a+ and is decelerated at a rate of a- to stop at a 
specified location.  

Depending on the distance between two locations, 
an AGV may reach the maximum speed (see (2)), or it 
may decelerate immediately after acceleration before 
reaching the maximum speed (see (1)). The travel time 
between two locations is given as follows. The deriva-
tion is left to the reader.  

T(d(vi
(k), vj

(k)), a+, a-, smax) = 
 

(k) (k)

i

max max(k) (k)

i j

i j max

2 2
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j
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Considering varying speeds of a vehicle during the 
travel, let t(xr

(k), vi
(k), vj

(k)) be the time that it takes for an 
AGV at xr

(k) to pick up a unit load from vi
(k), to deliver it 

to vj
(k) and to return to xk

(k), including the times to load 
and unload. It includes unloaded travel between xr

(k) and 
vi

(k), loading time TL, loaded travel between vi
(k) and vj

(k)
, 

unloading time TUL and unloaded travel between vj
(k)

 

and xr
(k). An AGV can have different acceleration and 

deceleration when loaded and unloaded. 

t(xr
(k), vi

(k), vj
(k)) = T(d(xr

(k), vi
(k)), aUL

+, aUL
- , 

max

ULs )  

 + TL  

 + T(d(vi
(k), vj

(k)), aL
+, aL

-, 
max

Ls )  

 + TUL  

 + T(d(vj
(k), xr

(k)), aUL
+, aL

-, 
max

ULs ),  

where  aUL
+

  : acceleration rate when unloaded, 
  aUL

-  : deceleration rate when unloaded, 

  
max

ULs  : maximum speed when unloaded,  

 aL
+

   : acceleration rate when loaded, 
 aL

-   
 : deceleration rate when loaded, 

 
max

Ls  : maximum speed when loaded. 

Note that each request requires one rotation around 
loop k, if d(xr

(k), vi
(k)) < d(xr

(k), vj
(k)) because the vehicle 

at xr
(k) is routed in the order of vi

(k) for pickup and vj
(k) 

for dropoff and then returns to xr
(k). Otherwise, the re-

quest requires two rotations because the vehicle at xr
(k) is 

routed in the order of vi
(k), vj

(k) for pickup, xr
(k), vi

(k) for 
dropoff, vj

(k) and xr
(k). The total time, required by an 

AGV located at xr
(k) to complete all requests to be pic- 

ked up from vi
(k), is denoted as t(xr

(k), vi
(k)) = 

( )

( )
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Let A be the vehicle availability per shift (meas-
ured in time). If t(vi

(k), vi
(k)) > A, i.e., station vi

(k) has too 
many requests for an AGV to complete, an AGV can be 
assigned to vi

(k) to serve part of requests from only vi
(k). 

Those served requests can be excluded from further 
consideration. This process can be repeated until t(vi

(k), 
vi

(k)) £ A for all i Î M(k). 
It is assumed that all requests from a station should 

be served by a single AGV and a series of consecutive 
stations should be assigned to an AGV. This assumption 
can reduce the complexity of vehicle control by dedi-
cating requests from consecutive stations to a single 

vehicle. Let S(k) = {S1
(k), S2

(k), …, ( )

( )

k

k

h
S }, where Sj

(k) Í 

M(k) denotes the set of P/D stations whose requests are 
served by the AGV pre-positioned at location xj

(k)
 Î X(k) 

The solution (X(k), S(k)), where X(k) = {x1
(k), x2

(k), …, 

( )

( )

k

k

h
x } and S(k)={S1

(k)
, S2

(k), …, ( )

( )

k

k

h
S }, is feasible if and 

only if the following conditions are satisfied.  
1. X(k) Ì G(k). 
2. Each set Sr

(k) contains consecutive pickup/dropoff 
stations which are served by xr

(k). 

3. 
( )
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k

r

k k

r r

u S

t x u A S
Î

£ Îå  

4. S(k) forms a complete partition of V(k), i.e., 
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The response time r(xr
(k), vi

(k)) for a request from 
vi

(k), processed by an AGV at xr
(k), is the unloaded travel 

time from xr
(k) to vi

(k), i.e., r(xr
(k), vi

(k)) = T(d(xr
(k), vi

(k)), 
aUL

+, aL
-, 

max

UL
s ). The maximum response time for re-

quests from all stations in Sr
(k) served by an AGV at xr

(k) 
can be determined as follows. 
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The maximum response time of a loop k, r(X(k), 
S(k)) with respect to a feasible solution (X(k), S(k)) is 

given by r(X(k), S(k)) =
( )

( ) ( )

{1,2,..., }

max ( , ).
k

k k

r r
r h

r x S
Î

 Finally, a 

feasible solution (X(k)*, S(k) *) is optimal if and only if 
r(X(k)*, S(k)*) £ r(X(k), S(k)), for all feasible (X(k), S(k)). 

Each dwell point xj
(k) in a single loop coincides 

with a station in Sj
(k) and it is not necessarily the first 

station in Sj
(k), jÎ{1, 2, …, h(k)} (Ventura and Rieksts 
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2006). Let r(Sj
(k)) be the optimal response time with re-

spect to any request initiated by stations in Sj
(k). Because 

the optimal dwell point for the vehicle assigned to Sj
(k)  

coincides with a station in Sj
(k), r(Sj

(k)) = 
( )

( )
min ( , )

k
j

k

j
u S

r u S
Î

. 

Ventura and Rieksts (2006) developed an exact 
polynomial-time algorithm to solve the idle AGV posi-
tioning problem in a unidirectional single loop system 
for the objective of minimizing the maximum response 
time. This section presents an extension of their algo-
rithm to the TLMV system with existence of vehicle’s 
acceleration, deceleration and maximum speed when 
loaded and unloaded, respectively.  

In loop k, let I(j) be the index of the first P/D sta-
tion in Sj

(k)
 in the direction of movement and 

( )
( , )

k

w
F i j  

be the optimal maximum response time for the first j 
pickup stations, starting from the first pickup station w, 
when they are served by i AGVs in loop k. The pro-
posed algorithm is based on a dynamic programming 
(DP) model. The DP model divides the idle vehicle po-
sitional problem into n stages, so that the initial station 
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I j
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(k) and an AGV dwell point xj
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Suppose that i-1 AGVs (in stage i-1) are assigned 
to loop k in order to serve the first p stations from sta-
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(k), such that r(
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S ). Note that p = 
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ered as r({
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Forward Recursive Relation : 

( )
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for i = 2, …, h(k), j = 1, …, m(k)-h(k)+i. 
Boundary Condition : 
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for j = 1, 2, …, m(k)-h(k)+1. 
 
If h(k) = 1, the definition of r(Sj

(k)) leads to an intui-
tive solution to the dwell point problem in a unidirec-
tional single loop layout with a single vehicle. When h(k) 
≥ m(k), all response times become 0’s by locating at least 
one vehicle at each station in loop k. When 1 < h(k) < 
m(k), the problem of finding the smallest maximum re-
sponse time can be formulated and optimally solved via 
the proposed algorithm in the following. 

3. PROPOSED ALGORITHM 

A recursive DP algorithm to select the optimal dwell 
points for AGVs considering time restrictions on vehicle 
availability in a given TLMV system is proposed, so 
that the maximum response time of the given AGV sys-
tem is minimized. In order to do so, an extended algo-
rithm in Section 2 can be repeated c∙cn-c = cn-c+1 times, 
by an exhaustive enumeration method in n-vehicle, c-
loop TLMV system. However, it is computationally in-
efficient. Therefore, this paper focuses on developing an 
optimal polynomial-time algorithm that determines the 
number of AGVs and the corresponding dwell points in 
each loop. The following additional notation and as-
sumptions are necessary to develop a proposed algorithm. 

 
C : number of loops in the TLMV system  
mk : number of P/D stations including transfer 

ports in loop k,  
tk : number of AGVs assigned to loop k, 
R(k)(tk) : optimal response time in loop k when tk 

AGVs are assigned to it, 
A : vehicle availability time per shift. 

 
The problem under consideration is formulated as 

follows : 

Minimize Res(n)  = 
(k)

k
k 1, ..., c

max R (t ),
=

 

subject to  
1

,
c

k

k

t n
=

=å  

1, integer, k 1, ..., c
k

t ³ =  

The above problem is two-fold; (1) to choose ap-
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propriate numbers of AGVs for all given loops and (2) 
to determine the best dwell points of AGV(s) for mini-
mizing the maximum response time. Note that the objec-
tive function R(k)(tk) is not simply a function of the 
number of stations in a loop, which is one of arguments 
in Ventura and Lee (2001), because it is a function of 
the topology of TLMV layout, which are described by 
configurations of stations in each loop. Response time in 
a loop is determined by a combination of the number of 
stations, the number of transfer ports, the topological 
location of stations, the numbers of AGV(s), traffic vol-
ume, traffic pattern and their dwell points. The con-
straints ensure that each loop has at least one AGV to 
satisfy requests and all available AGVs should be de-
ployed because Res(n) is monotonously decreasing with 
the number of AGVs (i.e., n). It is natural to see that 
more AGVs lead to the smaller response time in a loop. 
Therefore, the optimal maximum response time in loop 
k, R(k)(tk) decreases with respect to tk, k = 1, …, c. Be- 

cause 
(k)

k
k 1, ..., c

Max R (t )
=

determines the maximum response  

time for the system, if an additional AGV is provided, it 
must be assigned to the loop, of which the maximum 
response time is the largest. An additional AGV will 
contribute to the reduction of the maximum response 
time in the assigned loop, which automatically leads to 
the reduction of the maximum response time of a whole 
TLMV system. Otherwise, the additional AGV cannot 
make any contribution to the minimization of the objec-
tive function.   

The minimum number of AGVs, required for each 
loop in a given TLMV system, is related to the volume 
and pattern of pickup/dropoff requests (traffic) issued by 
stations. Though numbers of requests between pairs of 
stations are given, it is difficult to find an analytic so-
lution on the minimum number of AGVs for each loop. 
Therefore, the proposed algorithm uses the incremental 
approach. This approach is extended from the following 
theorem. The proof of Theorem 1 can be easily extended 
from Theorem 4 of Ventura and Rieksts (2006). 

 

Theorem 1: In loop k, for any station 
( )k

i
v Î M(k), let 

Ei
(k) = {

( ) ( ) ( )

1
, , ...,

k k k

i i i p
v v v

+ +
}, where p = 

( )

( ) ( ) ( )

1
0,..., 1

max { | ({ , , ..., }) }
k

k k k

i i i j
j m

j r v v v
+ +

= -

< ¥ , and 

( )

( ) ( ) ( ) ( )

,1 ,2 , ( )
{ , , ..., }

k

k k k k

i i i i q i
F F F F= , where 

( )

,1

k

i
F  = 

Ei
(k), 

( )

,

k

i j
F = 

( )

( )

k

I j
E , j = 2, …, q(k)(i)-1, 

( )

( ) 1

k

I j
v

-
is 

the last station in 
( )

, 1

k

i j
F

-
, 

( )

( )

, ( )
k

k

i q i
F =

( )

( )

( ( ))
k

k

I q i
E -Ei

(k) 

with 
( )

1

k

i
v

-
Î 

( )

( )

( ( ))
k

k

I q i
E , and q(k)(i) is the minimum 

number of AGVs required for a feasible solution 
starting at station i. Then n(k)* = min{q(k)(i)| vi

(k) Î 
M(k)} is the number of AGVs required to get a 
feasible solution in loop k. 

The proposed algorithm starts with assigning to 
each loop the minimum number of AGVs, which is ob-
tained by Theorem 1. The best dwell points can be ob-
tained using the recursive relation described in Section 2. 
Then, assign one AGV to the loop which has the largest 
contribution to the objective function by calculate the 
contribution of an additional AGV when it is assigned to 
each loop, until all n AGVs are in use. In this research, 
the objective is to minimize the maximum response time 

so that loop p, where R(p)(tp) =
(k)

k
k 1, ..., c

Max R (t )
=

, will be 

chosen in each iteration. The proposed algorithm is il-
lustrated in Figure 4 and summarized in the following. 
The proposed algorithm consists of two stages: feasibil-
ity stage and optimization stage. 

 
Feasibility stage : 

Step 0: For n-vehicle, c-loop TLMV system, convert 
transfer ports to pickup stations. For each port, set 
the number of pickup requests to the number of in-
coming traffics from other loops into the corre-
sponding loop via the corresponding port. Label all 
P/D stations including transfer ports in all loops as 
vi

(k) (I = 1, 2, …, m(k), and k = 1, 2, …, c) in the 
clockwise or counter-clockwise direction as appro-
priate. 
Step 1: If c > n, then stop and this system is not fea-
sible.  
Step 2: Calculate the minimum number tk of AGVs 
for each loop k, k = 1, …, c (using Theorem 1). Lo-
cate tk vehicles to minimize the maximum response 
time in loop k (using the algorithm in Section 2) for 
k = 1, …, c. 

Step 3: if 
1

c

k

k

t
=

å > n, then stop and this system is not  

feasible.  

Optimization stage: 

Step 4: If 
1

c

k

k

t
=

å = n, then stop and the current set of 

dwell points is optimal. The maximum response time 
can be easily calculated, using the current set of 
dwell points. Otherwise, find loop p that satisfies the 

condition R(p)(tp) = 
( )

1,...,

( )
k

k
k c

Max R t
=

 and set tp = tp +1. 

Tie can be broken arbitrarily. 
Step 5: Locate tp vehicles to minimize the maximum 
response time in loop p (using the algorithm in Sec-
tion 2). Update the new set of dwell points and the 
maximum response time R(p)(tp) in loop p. Note that 
exactly one additional AGV only causes the m(p) – tp 
calculations of the maximum response time, because 
R(p)(tp-1) is previously evaluated in the prior iteration. 
Go to step 4. 
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Theorem 2: Algorithm in Figure 4 provides a set of op-
timal dwell points for n-vehicle, c-loop TLMV sys-
tem.  

Proof. Let y(t) = 
( )

1,...,

( )
k

k
k c

Max R t
=

, where t=
1

c

k

k

t
=

å . Note 

that because R(k)(tk) is a monotonically decreasing func-
tion of tk for I = 1, …, c, y(t) is monotonically decreas-
ing with the respect to t, too. By induction, the proposed 
algorithm can be shown to generate an optimal set of 

dwell points. Let γ be the smallest number of AGVs to 
make the TLMV system feasible. Suppose that the pro-
posed algorithm provides a set of optimal dwell points 

when t = q, q ≥ γ and that R(p)(tp)  = 
( )

1,...,

( )
k

k
k c

Max R t
=

. Now, 

t is increased by 1, i.e., t = q +1. If any tk, k ≠ p, is in-

creased, the maximum response time of the TLMV sys-
tem will become equal to R(p)(tp), while an additional 
AGV in loops other than loop p will not decrease the 
maximum response time. Therefore, the best policy at 

 

Figure 4. Flowchart for the algorithm to position the idle AGVs in the TLMV to minimize the maximum response time 
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the current stage t = q+1, is to assign one more AGV only 
to loop p, i.e., tp = tp + 1, with the number of AGVs in 

other loops being kept same. y(q) = Max {
( )

( )
k

k
k p

Max R t
¹

, 

R(p)(tp-1)}} ≥ Max {
( )

( )
k

k
k p

Max R t
¹

, R(p)(tp)} = y(q+1), 

where y(q+1) is the response time obtained by the pro-
posed algorithm when t = q + 1 vehicles are available. 
This proves the Theorem. 

The computational complexity of the algorithm in 
Figure 4 is polynomial. The complexity of the algorithm 
in Section 2 is O(m2(m-n)2) when there are m P/D sta-
tions and n vehicles in a single loop. This procedure is 
used only once in Step 1 and at most n-c Step 5. Every 
loop should have at least one P/D stations and the mini-
mum number of AGVs which is at least one. Therefore, 
the worst case of computational efforts in Step 5 is O 
((m-c+1)2(m-n-c+1)2). This needs to be repeated at most 
n-c times. Therefore, the complexity of the proposed 
algorithm is O((n-c)((m-c+1)2(m-n-c+1)2). 

4. ILLUSTRATIVE EXAMPLE 

To illustrate the proposed algorithm in this article, 
an 8-vehicle 3-loop unidirectional TLMV system shown 
in Figure 5 is exemplified. The vehicle availability per 
shift is 1000 units of time under consideration, i.e., A = 
1000. Numbers on the arc represent the travel distance 
between adjacent stations. Because there are incoming 
and outgoing traffics between tandem loops through tran-
sfer ports, they are converted to additional P/D stations 
as Step 0 in the algorithm. Thus, P/D stations and trans-
fer ports in the tandem loop layout in Figure 5 are rela-
beled in Figure 6. In all three loops, vehicles are as-
sumed to move in the clockwise direction.  

The traffic, i.e., the requests between P/D stations, 
is given in Table 1. This traffic is divided into intraloop 
and interloop travels. The frequency of interloop travels 
between each pair of loops is used as the number of re-
quests at the transfer ports. After Step 0, the traffic fre-
quency (fij

(k)) of all stations including transfer ports in 
each loop are tabulated in Table 2-4. 
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Figure 5. 8-vehicle 3-loop unidirectional TLMV sys-
tem with 9 stations 

Figure 6. 8-vehicle 3-loop unidirectional TLMV system with 
9 stations after Step 0 in the proposed algorithm 

Table 1. Pickup requests/shift between pickup/dropoff stations in Figure 5 

dropoff 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 

v1 0 0 5 8 0 2 0 0 0 

v2 7 0 0 9 0 0 0 0 3 

v3 0 2 0 0 4 2 2 0 2 

v4 0 3 4 0 0 0 0 4 2 

v5 2 0 0 0 0 4 6 0 3 

v6 0 0 2 0 4 0 10 0 1 

v7 0 0 0 2 8 2 0 2 0 

v8 0 2 1 0 0 2 0 0 8 

pickup 

v9 2 3 0 0 3 0 0 4 0 
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Table 4. Pickup requests/shift (
( 3)

ij
f ) between pickup/ 

dropoff stations of loop 3 in Figure 6 

Dropoff 
 v1

(3) v2
(3) v3

(3) v4
(3) 

v1
(3) 0 8 2 3 

v2
(3) 4 0 3 5 

v3
(3) 2 4 0 0 

Pickup 

v4
(3) 4 7 0 0 

 
Step 0: c = 3 and n = 8. Convert all transfer ports in 
all loops to P/D stations and calculate fij

(1)
 , fij

(2)
 , and 

fij
(3).  

Step 1: c < n. Thus go to Step 2. 
Step 2: Check the minimum numbers of AGVs for 
loops 1, 2 and 3. t1 = 3, t2 = 2, and t3 = 1 are obtained 
based on Theorem 1. The current feasible set of 
dwell points are v2

(1)
, v3

(1), v5
(1)

, v2
(2), v4

(2), and v2
(3), 

using the algorithm in Section 2. 

Step 3: 
3

1

k

k

t
=

å = 6 ≤ n = 8. Thus continue to Step 4. 

Step 4: 
3

1

k

k

t
=

å = 6 ≤ n = 8. The maximum response 

time in loops 1, 2 and 3 are R(1)(3) = 5.25, R(2)(2) = 
8.25, and R(3)(1) = 10.25, respectively. The corre-
sponding optimal dwell points are v2

(1)
, v3

(1), v5
(1)

, 

v2
(2), v4

(2), and v2
(3). Therefore, the loop with the 

maximum response time in this iteration is loop 3. 
Set increase t3 by 1. 
Step 5: The algorithm in Section 2 has been applied 
to loop 3. The maximum response time in loop 3 is 
reduced to R(3)(2) = 5.25. The new corresponding 
dwell points in loop 3 are v2

(3) and v4
(3).  

Step 6: 
3

1

k

k

t
=

å = 7 ≤ n = 8. The maximum response 

time in loops 1, 2 and 3 are R(1)(3) = 5.25, R(2)(2) = 
8.25, and R(3)(2) = 5.25, respectively. The corre-
sponding optimal dwell points are v2

(1)
, v3

(1), v5
(1)

, 

v2
(2), v4

(2), v2
(3), and v4

(3). Therefore, the loop with the 
maximum response time in this iteration is loop 2. 
Increase t2 by 1. 
Step 7: The algorithm in Section 2 has been applied 
to loop 2. The maximum response time in loop 2 is 
reduced to R(2)(3) = 4.25. The new corresponding 
dwell points in loop 2 are v2

(2), v4
(2), and v5

(2)
.. 

Step 8: 
3

1

k

k

t
=

å = 8 = n. Stop. The optimal dwelling 

points are v2
(1)

, v3
(1), v5

(1)
, v2

(2), v4
(2), v5

(2), v2
(3), and 

v4
(3), where the numbers of AGVs in loops 1, 2 and 3 

are t1 = 3, t2 = 3, and t3 = 2. The optimal maximum 

response time is 
(k)

k
k 1, ..., c

Max R (t )
=

 = {5.25, 4.25, 5.25} 

= 5.25. 
 

The dwell points of AGVs are shown as filled 
boxes in Figure 7. Note that transfer ports serve as dwell 
points, depending on the volume of interloop travels. 

The summary of the solution is provided in Table 5. 
The locations of dwell points, vehicle utilization and 
maximum response time in each loop when given num-
bers of vehicles are presented. 

If an additional AGV is available, the tie of the 
maximum response time occurs in the next iteration. 
Either of loops 1 or 2 can be chosen arbitrary. The effec-
tiveness of the proposed algorithm has been shown in 

Table 2. Pickup requests/shift (
(1)

ij
f ) between pickup/dropoff stations of loop 1 in Figure 6 

dropoff 

 v1
(1) v2

(1) v3
(1) v4

(1) v5
(1) v6

(1) 

v1
(1) 0 0 5 8 0 2 

v2
(1) 7 0 0 9 3 0 

v3
(1) 0 2 0 0 2 8 

v4
(1) 0 3 4 0 6 0 

v5
(1) 2 5 1 0 0 0 

Pickup 

v6
(1) 2 0 2 2 0 0 

 

Table 3. Pickup requests/shift (
( 2 )

ij
f ) between pickup/dropoff stations of loop 2 in Figure 6 

dropoff 

 v1
(2) v2

(2) v3
(2) v4

(2) v5
(2) 

v1
(2) 0 4 6 2 3 

v2
(2) 4 0 10 2 1 

v3
(2) 8 2 0 2 2 

v4
(2) 4 4 2 0 0 

pickup 

v5
(2) 3 2 0 0 0 
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the illustrative example above. The complexity of algo-
rithm cannot be easily obtained in terms of m and n, 
because the complexity directly relies on the topology of 
tandem loop layout. However, it is conjecture that the 
proposed algorithm will be completed in polynomial 
time. 
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Figure 7. Optimal dwell points of 8 AGVs 

5.  CONCLUSIONS 

In this article, a polynomial-time DP algorithm has 
been proposed to determine an optimal set of dwell 
points that minimizes the maximum vehicle response 
time in AGV systems with a TLMV layout. The pro-
posed algorithm generalizes the approach developed by 
Ventura and Rieksts (2006) by considering the accelera-
tion and deceleration of vehicles in the calculation of the 
response time and by taking into account time con-
straints on the availability of vehicles. The proposed 
algorithm does not consider traffic congestion at the P/D 
stations and transfer ports due to random arrivals of 
pickup requests. In future research, we plan to consider 
stochastic delays in travel times due to congestion at the 
P/D stations and transfer ports. 
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Table 5. Summary of the proposed algorithm for the example in Figures 5 and 6. 

Loop 
# of 

AGVs 
Dwell Points Dedicated Stations 

Vehicle 
Usage 

Total 
Usage 

Maximum Re-
sponse Time 

/AGV 

Maximum Re-
sponse Time 

1 Infeasible    Infinite Infinite 

2 Infeasible    Infinite Infinite 

v5
(1)

 v5
(1)

, v6
(1), v1

(1) 784.96 5.25 

v2
(1) v2

(1)
 469.92 0 3 

v3
(1) v3

(1), v4
(1)

 616.21 

1871.09 

4.25 

5.25 

v2
(1) v2

(1) 469.92 0 

v3
(1) v3

(1) 291.51 0 

v4
(1) v4

(1), v5
(1) 516.94 3.25 

1 

4 

P6
(1) p6

(1), v1
(1) 545.26 

1823.63 

3.25 

3.25 

1 Infeasible    Infinite Infinite 

v4
(2) v4

(2), v5
(2), v1

(2)
 822.00 8.25 

2 
v2

(2) v2
(2), v3

(2) 819.86 
1641.86 

4.25 
8.25 

v2
(2)

 v2
(2), v3

(2) 819.86 4.25 

v4
(2)

 v4
(2) 254.21 0 3 

v5
(2) v5

(2), v1
(2) 503.29 

1577.36 

4.25 

4.25 

v1
(2) v1

(2), v2
(2) 812.76 3.25 

v3
(2) v3

(2) 380.24 0 

v4
(2)

 v4
(2) 254.21 0 

2 

4 

v5
(2) v5

(2) 116.39 

1563.61 

0 

3.25 

1 v2
(3) v2

(3), v3
(3), v4

(3), v1
(3) 906.05 906.05 10.25 10.25 

v2
(3) v2

(3), v3
(3) 357.06 5.25 

2 
v4

(3) v4
(3), v1

(3) 480.24 
837.30 

4.25 
5.25 

v2
(3) v2

(3) 233.23 0 

v3
(3) v3

(3), v4
(3) 347.37 3.25 

3 

3 

v1
(3) v1

(3) 255.45 

836.05 

0 

3.25 
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