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Abstract. Many quality engineering practitioners continue to have a considerable interest in implementing the 
concept of response surface methodology to real situations. Recently, dual response surface approach is exten-
sively studied and recognized as a powerful tool for robust design. However, existing methods do not consider 
the information provided by customers and design engineers. In this regard, this article proposes a flexible opti-
mization model that incorporates that information via desirability function modeling. The optimization scheme 
and its modeling flexibility are demonstrated through an illustrative example by comparing the proposed model 
with existing ones. 
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1.  INTRODUCTION 

Robust design (RD) is a cost-effective methodology 
for determining the best settings of the control factors that 
make product performance insensitive to the influence of 
noise factors. Taguchi first introduced the concept of RD 
by using orthogonal arrays and signal-to-noise ratios. 
Even if the inclusion of noise factors for design optimiza-
tion has been considered as an innovative concept by re-
searchers, there is a general consensus that three major 
problems are embodied in the Taguchi’s approach. First, 
signal-to-noise ratios are heuristic tools to minimize the 
quality loss. Secondly, orthogonal arrays are not convinc-
ing, particularly when there are high interactions among 
control and noise factors. Finally, his approach lacks a 
sequential formal investigation (see, e.g., Box 1985). A 
review article by Myers et al. (1989) revealed that practi-
tioners continue to have a considerable interest in apply-
ing the concept of response surface methodology to many 

quality engineering problems. RSM can be used to esti-
mate the relationship between the response (y) and con-
trol variables ( ix ’s). For example, consider a system in-
volving a response y which depends on k control vari-
ables ).,,,( 21 kxxx  Assuming a second-order poly-
nomial model, the fitted response function can be ex-
pressed as 
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Thus, the design engineers can find the optimal setting for 
the control variables that optimizes the response. It was 
pointed out that such a model works well when the vari-
ance of the response is relatively small and stable, but 
when the variance is unstable, classical response surface 
method could be misleading (Kim and Lin 1998). 

Since first introduced by Myers and Carter (1973), a 
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dual response surface approach, which models both the 
process mean and standard deviation as separate re-
sponses, has received a lot of attention in the context of 
RD (see, e.g., Vining and Myers 1990, Castillo and Mon-
gomery 1993, Lin and Tu 1995, and Kim and Lin 1998). 
Let )(ˆ xμ  and )(ˆ xσ  represent the fitted response func-
tions for the mean and the standard deviation of the qual-
ity characteristic, respectively. Assuming a second-order 
polynomial model for the response functions, we get 
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Now, these response functions can be used in optimiza-

tion models to find optimal setting for control variables. 
Castillo and Mongomery (1993) suggested an opti-

mization model to find an optimal setting of control fac-
tors, which minimizes the standard deviation while keep-
ing bias at zero. However, the solution may not minimize 
the expected quality loss due to the unrealistic constraint 
of keeping the process mean at the target value. Later, Lin 
and Tu (1995) suggested that minimizing the expected 
loss might provide better solution than that of models 
based on zero-bias logic, even if the process mean might 
be off the target. All the above approaches did not con-
sider the information fed by customers and design engi-
neers, if available. For example, if a customer allows a 
certain level of bias in process mean and concerns about 
taking the variance down, the optimization model by Vin-
ing and Myers (1990) and Castillo and Montgomery 
(1993) might be inappropriate. To the contrary, if a design 
engineer did not care about the variance up to a reason-
able level and emphasized getting process mean as close 
to the target value as possible, the approach taken by Lin 
and Tu (1995) might be inadequate. In the example dis-
cussed in Lin and Tu (1995), the squared bias has rare 
effect on the expected quality loss. Consequently, mini-
mization of the expected quality loss is mostly determined 
by the variance while sacrificing the performance in bias. 
Furthermore, such a quite good performance in variance 
may hardly be obtained in some practical situations. 
Those kinds of information need to be considered in de-
signing processes. 

In this regard, Kim and Lin (1998) proposed an op-
timization model that balances the grade of membership 
functions (or equivalently, the degree of desirability func-
tions) for process mean and standard deviation. However, 
balanced desirability could not maximize the level of 
composite desirability. Thus, the optimal solution may not 
be the most desirable one from the viewpoint of a cus-
tomer or a design engineer. The main purpose of this pa-
per is to propose an optimization model that incorporates 
the information on mean and variance, provided by cus-
tomers and design engineers, to construct the desirability 

functions, and then maximizes the composite desirability 
of mean and standard deviation. Thus, the proposed 
model is flexible in the sense that preferences of cus-
tomers and design engineers can be reflected. Modeling 
flexibility of our approach is demonstrated in an example 
and compared with existing methods. 

2.  DESIRABILITY FUNCTION 

Since first introduced by Harrington (1965), the de-
sirability functions have been used extensively to simul-
taneously optimize several responses by balancing per-
formances of the responses (Derringer and Suich 1980, 
Derringer 1994). Balancing performances inevitably in-
volves the trade-off among responses. When balancing, 
the most ambiguous and important point is how to trade-
off responses having different magnitudes. Desirability 
functions provide the basis for responses with different 
magnitudes to be measured in the same scale.  

Any levels of a response can be mapped onto the de-
sirability function, which ranges from zero to one. A zero-
level of desirability implies that performances of the cor-
responding response may not be acceptable, while a de-
sirability of one can be considered as the most satisfac-
tory level of the response’s performance. The desirability 
function can be obtained by transforming a performance 
level of the response to a desirability value. Suppose a 
response y , which depends on k control variables ,( 1x  

),,,2 kxx  is estimated by a second-order polynomial 
model as equation (1). Assuming that a specific target 
value is the most satisfactory level of the response y  
and performances below a lower limit or above an upper 
limit are unacceptable (i.e., nominal-the-best). Then, a 
desirability function can be constructed as 
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where maxy  and miny  represent the upper and lower 
limits, respectively, and τ  is the target value. For the 
case of “smaller-the-better” responses, the desirability 
functions can be modeled in a similar way. 
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In equations (3) and (4), r, s, and t are user-specified 
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weights to allow the engineer to accommodate nonlinear 
desirability functions. (Derringer and Suich 1980) If the 
values of r, s, and t are set to one, the desirability func-
tions are linear. Applying the desirability functions to 
multiple responses system, we need to find a composite 
desirability which is defined as the geometric mean of 
the individual desirabilities (Derringer and Suich 1980, 
Derringer 1994, Castillo et al. 1996). For an n responses 
system, the overall performance of the system is deter-
mined by the composite desirability D, which can be 
expressed as  
 

[ ]nndddD
1

21=    (5) 

 
where 'id s represent desirability functions of the re-
sponses and defined by equations (3) and (4) according to 
the characteristics of corresponding responses. The ra-
tionale behind using the geometric mean is that if the de-
sirability of any response is zero at some operating condi-
tion then the product usually turns out to be unacceptable 
regardless of the performances of other responses. As the 
dual response surface approach to robust design involves 
two responses, mean and standard deviation, the concept 
of composite desirability may be applied to find the opti-
mal setting of control factors. 

3. PROPOSED OPTIMIZATION STRATEGY 

The objective of RD is to find an optimal setting of 
control factors which minimizes bias and variance of 
process simultaneously. However, the optimal solution 
minimizing bias is usually different from one minimiz-
ing variance, and vice versa. Thus, we need to compro-
mise between individual solutions. Vining and Myers 
(1990) and Castillo and Montgomery (1993) provided 
compromise solutions by assigning preemptive priority 
to minimizing bias. Lin and Tu (1995) yielded to com-
promise solutions by giving equal weights to squared 
bias and variance. Proposed optimization model is to 
provide the most desirable compromise solution that 
maximizes the composite desirability of mean and stan-
dard deviation. The nominal-the-best case for process 
mean will be focused to illustrate the proposed model, 
and it is obvious that standard deviation is a smaller-the-
better case.  

Assume that second-order polynomial models are 
appropriate to approximate response functions of process 
mean and standard deviation as in equation (2). The lower 
and upper limits of bias and standard deviation need to be 
set to define individual desirabilities. It is quite reasonable 
assuming that an engineer can specify the upper and 
lower limits to avoid unusual derailments of the process. 
As in equations (3) and (4), the desirability functions for 
process mean and standard deviation are given by 
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where minμ  and maxμ  represent the lower and upper 
limits of process mean, respectively, while minσ  and 

maxσ  are those of standard deviation. The value of 
minσ  is usually set to zero, however, may take positive 

values if the engineer does not care about the variability 
up to a certain level in some cases (Kim and Lin 1998). 
The linear desirability functions (i.e., 1=== tsr ) are 
focused in this paper. Nonlinear desirability functions 
are also studied later to accommodate the user-specified 
weights. 

RD requires a simultaneous optimization of mean 
and standard deviation. Since a solution that optimizes 
both mean and standard deviation hardly exists, we need 
to make a compromise between them. The proposed 
optimization model, which provides a compromise solu-
tion maximizing the composite desirability D, can be 
written as  

 

Maximize ( ) 2
1

σμ ddD ⋅=  

subject to maxmin )(ˆ μμμ ≤≤ x  

  maxmin )(ˆ σσσ ≤≤ x  

  ],[ UL xxx∈ , 
 

where Lx  and Ux  are lower and upper limits for x , 
respectively.  

The most significant advantage of our model over 
the existing ones comes from its modeling flexibility. 
Customers’ or design engineers’ preferences can be in-
cluded in the proposed model either by adjusting the 
limits of mean and bias or by assigning appropriate user-
specified weights. For example, the desirability function 
can be asymmetric as the design engineer’s preference 
changes at different rates. If the process mean lower 
than target value need to be avoided, the lower limit 
may be set closer to target value than the upper limit. 
User-specified weights are another significant means to 
incorporate the engineer’s preference into the model. A 
larger weight may be assigned if it is highly desirable 
for the standard deviation to be as small as possible. On 
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the other hand, a smaller value of r  may be specified 
if the engineer does not care about the standard devia-
tion within the limits.  

4. AN ILLUSTRATIVE EXAMPLE 

To demonstrate the usefulness of the proposed model, 
the following example is taken from Box and Draper 
(1987), which was also used in Vining and Myers (1990), 
Lin and Tu (1995), and Kim and Lin (1998). A 33 factorial 
design with three replicates at each design point is used to 
investigate the effects of three factors, speed (x1), pressure 
(x2) and distance (x3), upon the application of coloring 
inks onto packaging labels as shown in Table 1. The aver-
age and standard deviation of three replicates at each de-
sign point are also presented in the table. The quality 
characteristic of interest is the quality of printing machine 
whose target value is 500. The quadratic fitted response 
functions for process mean and standard deviation were 
given by  
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respectively (Vining and Myers (1990)). The constraints 
for the control factors were 11 ≤≤− ix  for i = 1, 2, 3. 
Suppose it is necessary for bias from the target not to ex-
ceed 10 (that is, 490min =μ and 510max =μ ). 
Furthermore, if it is technologically infeasible achieving 
variance below 1500 and a design engineer specified 
2100 as the maximum allowable level of variance, then 

minσ  and maxσ  are set 1500  and 2100 , respec-
tively. Assuming linear desirability functions for process 
mean and standard deviation, then the optimization 
model can be written as 
 

Maximize ( )21σμ ddD ⋅= 1=== tsr  

subject to 510)(ˆ490 ≤≤ xμ  

  2100)(ˆ1500 ≤≤ xσ  

  11 ≤≤− ix , i = 1, 2, 3. 
 

The optimal setting is found to be (1.000, 0.102, -0.257) 
with composite desirability of 0.331 (desirabilities of 
process mean and variance are 0.804 and 0.136, respec-

tively). The result is summarized and compared with 
those of Vining and Myers (1990), Castilo and Mongom-
ery (1993), Lin and Tu (1995), and Kim and Lin (1998) in 
Table 2. Note that the desirability of Vining and Myers 
(1990) is zero since the standard deviation falls above the 
upper limit even though the mean exactly falls at the tar-
get value. If the upper limit of standard deviation had 
been set at a value greater than 70.2679 , the desirabil-
ity would have taken a positive value. The results of Cas-
tillo and Mongomery (1993) can be obtained by tighten-
ing the limits of process mean, i.e., by setting minμ  

τμ ≅≅ max . The optimization model taken by Kim and 
Lin (1998) always yields to the same level of desirabili-
ties for process mean and standard deviation. However, 
the balanced desirabilities between process mean and 
standard deviation could not provide the most desirable 
solution. The proposed model provides the most desirable 

Table 1. Data for example. 

u 1x 2x 3x 1uy 2uy
 

3uy
 

uy
 

us
 

1 -1 -1 -1 34 10 28 24.0 12.5
2 0 -1 -1 115 116 130 120.3 8.4
3 1 -1 -1 192 186 263 213.7 42.8
4 -1 0 -1 82 88 88 86.0 3.7
5 0 0 -1 44 178 188 136.7 80.4
6 1 0 -1 322 350 350 340.7 16.2
7 -1 1 -1 141 110 86 112.3 27.6
8 0 1 -1 259 251 259 256.3 4.6
9 1 1 -1 290 280 245 271.7 23.6
10 -1 -1 0 81 81 81 81.0 0.0
11 0 -1 0 90 122 93 101.7 17.7
12 1 -1 0 319 376 376 357.0 32.9
13 -1 0 0 180 180 154 171.3 15.0
14 0 0 0 372 372 372 372.0 0.0
15 1 0 0 541 568 396 501.7 92.5
16 -1 1 0 288 192 312 264.0 63.5
17 0 1 0 432 336 513 427.0 88.6
18 1 1 0 713 725 754 730.7 21.1
19 -1 -1 1 364 99 199 220.7 133.8
20 0 -1 1 232 221 266 239.7 23.5
21 1 -1 1 408 415 443 422.0 18.5
22 -1 0 1 182 233 182 199.0 29.4
23 0 0 1 507 515 434 485.3 44.6
24 1 0 1 846 535 640 673.7 158.2
25 -1 1 1 236 126 168 176.7 55.5
26 0 1 1 660 440 403 501.0 138.9
27 1 1 1 878 991 1161 1010.0 142.5
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solution with a little higher expected loss.  
A designer’s preference may be reflected either by 

setting limits or by assigning weights. By varying the 
limits of process mean and standard deviation, the desir-
abilities of proposed model are compared with those of 

existing models. As expected, the proposed model shows 
better performances in terms of composite desirability 
across various settings of limits. Table 3 shows the desir-
abilities of various models by varying maxσ  from 1950  
to 2150 , while keeping minμ , maxμ , and minσ  at 490, 

Table 2. Comparison of results( 490min =μ , 510max =μ , minσ = 1500 , and maxσ = 2100 ). 

Model Optimal Setting Mean 
(desirability) 

Variance 
(desirability) 

Expected  
Quality Loss 

Composite  
Desirability 

VM 
 

CM 
 

LT 
 

KL 
 

PM 
 

(0.614, 0.228, 0.100) 
 

(1.000, 0.118, -0.259) 
 

(1.000, 0.073, -0.251) 
 

(1.000, 0.055, -0.248) 
 

(1.000, 0.102, -0.257) 
 

500.00 
(1.000) 
500.00 
(1.000) 
494.44 
(0.444) 
492.32 
(0.232) 
498.04 
(0.804) 

2679.70 
(0.000) 
2033.74 
(0.103) 
1974.02 
(0.192) 
1951.79 
(0.232) 
2012.69 
(0.136) 

2679.70 
 

2033.74 
 

2005.08 
 

2010.77 
 

2016.53 
 

0.000 
 

0.320 
 

0.300 
 

0.232 
 

0.331 
 

Note: VM (Vining and Myers 1990), CM (Castillo and Mongomery 1993), LT (Lin and Tu 1995),  
KL (Kim and Lin 1998), and PM (Proposed Model). 
 

Table 3. Comparison of results by varying maxσ ( 490min =μ , 510max =μ , minσ = 1500 ). 

maxσ
Model Summary 

1950 )16.44(= 2050 )28.45(= 2150 )37.46(=
Optimal Setting (1.000, 0.118, -0.259) (1.000, 0.118, -0.259) (1.000, 0.118, -0.259) 

Mean  
(Desirability) 

500.00 
(1.000) 

500.00 
(1.000) 

500.00 
(1.000) 

Std. Dev.  
(Desirability) 

45.10 
(0.000) 

45.10 
(0.027) 

45.10 
(0.166) 

CM 

Composite Desirability 0.000 0.166 0.408 
Optimal Setting (1.000, 0.073, -0.251) (1.000, 0.073, -0.251) (1.000, 0.073, -0.251) 

Mean  
(Desirability) 

494.44 
(0.444) 

494.44 
(0.444) 

494.44 
(0.444) 

Std. Dev.  
(Desirability) 

44.43 
(0.000) 

44.43 
(0.129) 

44.43 
(0.254) 

LT 

Composite Desirability 0.000 0.240 0.334 
Optimal Setting (1.000, 0.039, -0.246) (1.000, 0.050, -0.248) (1.000, 0.059, -0.249) 

Mean  
(Desirability) 

490.39 
(0.039) 

491.78 
(0.178) 

492.79 
(0.279) 

Std. Dev. 
(Desirability) 

43.95 
(0.039) 

44.11 
(0.178) 

44.24 
(0.279) 

KL 

Composite Desirability 0.039 0.178 0.279 
Optimal Setting (1.000, 0.045, -0.247) (1.000, 0.083, -0.254) (1.000, 0.119, -0.260) 

Mean  
(Desirability) 

491.08 
(0.108) 

495.75 
(0.575) 

500.00 
(1.000) 

Std. Dev.  
(Desirability) 

44.03 
(0.024) 

44.59 
(0.105) 

45.10 
(0.166) 

PM 

Composite Desirability 0.050 0.246 0.408 
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510, and ,1500  respectively. The optimization model 
by Lin and Tu (1995) shows better performances for small 
values of maxσ . On the other hand, the model by Castillo 
and Montgomery (1993) turns out to be more desirable as 

maxσ  increases. Note that our proposed model keeps track 
of better performances across various values of maxσ . 
When maxσ = ,1950  composite desirabilities of Casti-
llo and Montgomery (1993) and Lin and Tu (1995) are zero 
since standard deviations exceed the upper limit. On the 
other hand, when maxσ = ,2150  the optimal solution is 
equivalent to that of Castillo and Montgomery (1993) since 
less emphasis would be placed on standard deviation. 

Table 4 illustrates the desirabilities by varying minμ  
from 480 to 495, while keeping ,maxμ  ,minσ  and maxσ  
at 510, 1500 , and 2100 , respectively. Our model still 
chases better performances among existing models. Note 
that the desirability of proposed model approaches to that 
of Castillo and Montgoemry (1993) as the lower limit 
gets closer to the target value. This is because more em-
phasis would be placed on taking process mean to the 
target value. Actually, the optimal solution of proposed 
model is equivalent to their solution when the lower limit 
is set to 495. Table 5 compares the results of various 
models for some values of minμ  The composite desir-

Table 4. Comparison of results by varying minμ ( 510max =μ , minσ = 1500 , and maxσ = 2100 ). 

minμ  
Model Summary 

485 490 495 
Optimal Setting (1.000, 0.118, -0.259) (1.000, 0.118, -0.259) (1.000, 0.118, -0.259) 

Mean  
(Desirability) 

500.00 
(1.000) 

500.00 
(1.000) 

500.00 
(1.000) 

Std. Dev.  
(Desirability) 

45.10 
(0.103) 

45.10 
(0.103) 

45.10 
(0.103) 

CM 

Composite Desirability 0.320 0.320 0.320 
Optimal Setting (1.000, 0.073, -0.251) (1.000, 0.073, -0.251) (1.000, 0.073, -0.251) 

Mean  
(Desirability) 

494.44 
(0.646) 

494.44 
(0.444) 

494.44 
(0.000) 

Std. Dev.  
(Desirability) 

44.43 
(0.192) 

44.43 
(0.192) 

44.43 
(0.254) 

LT 

Composite Desirability 0.352 0.300 0.000 
Optimal Setting (1.000, 0.029, -0.244) (1.000, 0.055, -0.248) (1.000, 0.084, -0.254) 

Mean  
(Desirability) 

489.25 
(0.284) 

492.32 
(0.232) 

495.86 
(0.172) 

Std. Dev.  
(Desirability) 

44.56 
(0.284) 

44.18 
(0.232) 

44.60 
(0.172) 

KL 

Composite Desirability 0.284 0.232 0.172 
Optimal Setting (1.000, 0.081, -0.253) (1.000, 0.083, -0.254) (1.000, 0.119, -0.260) 

Mean  
(Desirability) 

495.55 
(0.703) 

498.04 
(0.804) 

500.00 
(1.000) 

Std. Dev.  
(Desirability) 

44.56 
(0.178) 

44.86 
(0.136) 

45.10 
(0.103) 

PM 

Composite Desirability 0.354 0.330 0.320 
 

Table 5. Effects of Weight r ( 490min =μ , 510max =μ , minσ = 1500 , and maxσ = 2100 ). 

Weight r Optimal Setting Mean Variance Expected Quality Loss 
0.1 (1.000, 0.119, -0.260) 500 2033.80 2033.80 
0.7 (1.000, 0.114, -0.259) 499.46 2027.93 2028.23 
1.0 (1.000, 0.102, -0.257) 498.04 2012.69 2016.53 
2.5 (1.000, 0.074, -0.252) 494.60 1975.92 2005.09 
5.0 (1.000, 0,058, -0.249) 492.69 1955.65 2009.15 



 Desirability Function Modeling for Dual Response Surface Approach to Robust Design 203 

 

ability of Lin and Tu (1995) is zero since the process 
mean is smaller than the lower limit when minμ  = 495.  

Finally, the effects of weights are also studied by 
varying the value of the weight of standard deviation (r) 
as in Table 4. As the weight increases, the standard devia-
tion gets smaller while sacrificing the performance in 
process mean. When 1.0=r , i.e., a lot smaller weight is 
assigned to standard deviation, the process mean is set 
exactly at the target while sacrificing the performance in 
standard deviation. Note that the solution obtained is 
equivalent to that of Castillo and Montgomery (1993) 
since much more emphases are placed on process mean. 
On the other hand, for the case of 0.5=r , i.e., much 
larger weight is assigned to standard deviation, the proc-
ess mean is quite off the target while the variance reduces 
more or less compared with the cases having smaller 
weights. The weights of process mean can also be exam-
ined in a similar way. As the weights gets larger, process 
mean is expected to approach to target value while stan-
dard deviation increases. 

5. CONCLUDING REMARKS 

In this paper, we proposed a versatile optimization 
model for robust design. The proposed model is to 
maximize the composite desirability of process mean 
and variance, and thus provides the most desirable com-
promise solution. It can accommodate a variety of de-
sign engineers’ and customers’ preferences either by 
adjusting the limits on process mean and standard devia-
tion or by assigning different weight to desirabilities of 
mean and standard deviation. For example, a process 
mean that is very close to the target value can be 
achieved either by assigning large weight to process 
mean or by tightening the limits of process mean. Once 
the preferences for the process are identified, the pro-
posed model provides better (or at least equal) solutions 
compared with existing models. 
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