• Title/Summary/Keyword: Response surface

Search Result 4,788, Processing Time 0.032 seconds

A Study on Designing Mobile Phone Display in Consideration of Elder People's Optical Characteristics and Preferences: Using Conjoint Analysis and Response Surface Method (장년층의 시각적 특성과 선호도를 고려한 휴대폰의 디스플레이 설계에 관한 연구: 컨조인트 분석과 반응표면분석을 활용하여)

  • Lee Sung-Hoon;Shin Yong-Sik;Park Yong-Gil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • This study is about designing mobile phone display in consideration of elder people's preferences by reason of their optical weakness. The research is closely connected with designing user-friendly interface by considering user characteristics. The criteria for first experiment are font sizes, font types, line spacing and background colors. With the experiment result, relative importance of each attribute and subjective preference are investigated by conjoint analysis. Secondly, an optimal display design for elder people is presented by response surface method on the basis of the result of conjoint analysis, other statistical analyses, and user interviews.

  • PDF

Statistical Characterization and Optimization of SU-8 Photoresist Processing by Response Surface Methodology (반응표면분석을 통한 SU-8 포토레지스트의 특성 및 최적화)

  • Mun, Sei-Young;Kim, Gwang-Beom;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.891-894
    • /
    • 2005
  • SU-8은 부드러운 벽면을 가지는 두꺼운 패턴을 제작하는 데 사용되는 음성 감광제(negative photoresist)이다 .이것은 처리 후에 강성이 높고 화학적으로 강인한 장점을 가지고 있으며 최근 MEMS 디바이스의 구조체로 쓰이고 있다. 그러나 SU-8은 공정 처리요소들에 대하여 매우 민감하고 사용하기 어려운 것으로 알려져 있다. 본 연구에서는 공정 처리요소로 exposure energy, post exposure bake (PEB) temperature, PEB time을 조절하여 실험을 하였다. Response Surface Methodology (RSM)를 이용해 각 인자가 delamination에 미치는 영향에 대해 분석하였고 이를 바탕으로 SU-8의 delamination을 최소화하기 위한 처리요소들의 최적화 방안을 제시하였다.

  • PDF

Approximate Optimization of Suspension Mechanism for Outdoor Security Robot using Response Surface Methodology (반응표면법을 이용한 고속 주행용 실외 경비로봇의 현가장치 근사 최적화)

  • Koh, Doo-Yeol;Jeong, Hae-Kwan;Woo, Chun-Kyu;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • Security robot has gradually developed and deployed in order to protect civilian's lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.

Optimization of Culture Conditions and Bench-Scale Production of $_L$-Asparaginase by Submerged Fermentation of Aspergillus terreus MTCC 1782

  • Gurunathan, Baskar;Sahadevan, Renganathan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.923-929
    • /
    • 2012
  • Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental $_L$-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature $35^{\circ}C$, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of $_L$-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

Optimum Design of BLDC Motor Magnet Using Genetic Algorithm and Response Surface Method (유전알고리즘과 반응표면법을 이용한 BLDC 전동기용 영구자석 최적설계)

  • Kim, Chang-Eob;Jeon, Mun-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.152-157
    • /
    • 2004
  • In this paper, an optimum design method is presented for BLDC moor magnet using genetic algorithm(GA) and response surface method(RSM). The cogging torque is calculated by finite element method for the designs obtained by GA and RSM. The results are compared and discussed for the simulation time and the cogging torque.

Analysis and Reduction of Escalator Vibration Using the Response Surface Methodology (반응 표면법을 이용한 에스컬레이터의 진동 저감에 관한 연구)

  • Lim, Su-Young;Kwon, Yi-Sug;Park, Chan-Jong;Hong, Seong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.623-628
    • /
    • 2000
  • This paper deals with an analysis and reduction of escalator vibration by using the response surface model. Optimization of the escalator vibration is performed by minimization of the vibration responses which are measured at steps. The response surface models of the factors are constructed by using the experimental data based on the D optimal design method. The multi-objective optimization is also performed by applying desirability function and overlaid contour plot techniques. The optimal solution, which is obtained for a typical escalator system, is applied to reduce the escalator vibration.

  • PDF

Optimization of Jelly with Addition of Green tea Powder using a Response Surface Methodology (반응표면 분석법을 이용한 녹차가루 첨가 젤리 제조의 최적화)

  • 허혜연;주나미;한영실
    • Korean journal of food and cookery science
    • /
    • v.20 no.1
    • /
    • pp.112-118
    • /
    • 2004
  • The purpose of this study was to find the optimal mixing conditions of three different amounts of gelatin, green tea powder and sucrose for preparation green tea powder jelly. A central composite design involving gelatin(12 ∼ 16g), green tea powder(3∼5g) and sucrose(40∼60g) was used to investigate the sensory characteristics of green tea powder jelly. Sensory characteristics, such as hardness, elasticity, sweetness, transparency, color, flavor and overall quality of green tea powder jelly, were measured using a response surface methodology computer program. The overall optimal conditions that satisfied all the sensory properties of green tea powder jelly were 13.4g gelatin, 4.2g green tea powder and 50.8g sucrose.

Optimization of Saponin Extraction Conditions in Ginseng Milk using Response Surface Methodology (반응표면분석 법을 이용한 인삼우유 중 사포닌 추출조건의 최적화)

  • 이승수;박종면
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 1994
  • To develop the methodology of the quantitative analysis of saponin in ginseng milk, conditions of the saponin extraction were optimized using the fractional factorial design with 3 variables and 3 levels by a RSM computer program. The extraction of saponin increased with an increase in extraction temperature up to $90^{\circ}C$ and then decreased significantly at $100^{\circ}C$. Extraction time affected the saponin yield in a similar trend. On the other hand, decreasing cooling temperature increased the amount of the saponin extracted. Recovery yield of the saponin from ginseng milk varied from 70.0% to 92.9%. The optimum extraction temperature, time and cooling temperature determined by partial differentiation of the model equation were $86^{\circ}C$, 2.83 hrs and $4^{\circ}C$, respectively. Key words Ginseng milk, saponin, response surface methodology.

  • PDF

Determination of the Temperature Coefficient of the Constitutive Equation using the Response-Surface Method to Predict the Cutting Force (반응표면법을 이용한 구성방정식의 온도계수 결정과 절삭력 예측)

  • Ku, Byeung-Mun;Kim, Tae-Ho;Park, Jung-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.9-18
    • /
    • 2021
  • The cutting force in a cutting simulation is determined by the cutting conditions, such as cutting speed, feed rate, and depth of cut. The cutting force changes, depending on the material and cutting conditions, and is affected by the heat generated during cutting. The physical properties for predicting the cutting force use constitutive equations as functions of the hardening term, rate-hardening term, and thermal-softening term. To accurately predict the thermal properties, it is necessary to accurately predict the thermal-softening coefficient. In this study, the thermal-softening coefficient was determined, and the cutting force was predicted, using the response-surface method with the cutting conditions and the thermal-softening coefficient as factors.

Response Surface-Optimized Isolation of Essential Fatty Acids via Castor Oil Dehydration

  • Suratno, Lourentius;Imanuel, Anugerahwan;Brama, Andika;Adriana Anteng, Anggorowati;Ery Susiany, Retnoningtyas;Kiky Corneliasari, Sembiring;Wiyanti Fransisca, Simanullang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • The reaction conditions optimization, including the temperature of the reaction, amount of catalyst required, and reaction time for the linoleic acids (LAs) and conjugated linoleic acids (CLAs) production by catalytic dehydration of castor oil via saponification was investigated by response surface methodology (RSM). It was confirmed that all three parameters (temperature, time, and amount of catalyst) were influential factors in isolating LAs and CLAs. When the temperature was increased, the iodine value increased, and the reaction time and catalyst amount increased. The optimal reaction conditions were: 240 ℃, 2.2 h reaction time, and 7 wt% catalyst amount. The maximum iodine value reached 156.25 with 91.69% conversion to the essential fatty acids.