DOI QR코드

DOI QR Code

Optimization of Culture Conditions and Bench-Scale Production of $_L$-Asparaginase by Submerged Fermentation of Aspergillus terreus MTCC 1782

  • Received : 2011.12.01
  • Accepted : 2012.02.27
  • Published : 2012.07.28

Abstract

Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental $_L$-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature $35^{\circ}C$, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of $_L$-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

Keywords

References

  1. Ali, S. S., V. Rai, K. Soni, P. Kulshrestha, and S. K. Lai. 1994. A fungal L-asparaginase with potential antitumor activity. Ind. J. Microbiol. 34: 73-76.
  2. Baskar, G. and S. Renganathan. 2009. Production of L-asparaginase from natural substrates by Aspergillus terreus MTCC 1782: Effect of substrate, supplementary nitrogen source and L-asparagine. Int. J. Chem. React. Eng. 7: A41.
  3. Baskar, G. and S. Renganathan. 2010. Optimization of Lasparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network linked genetic algorithm. Asia Pac. J. Chem. Eng. DOI: 10.1002/apj.520.
  4. Baskar, G. and S. Renganathan. 2011. Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol. Bioproc. Eng. 16: 50-58. https://doi.org/10.1007/s12257-010-0119-7
  5. Broome, J. D. 1963. Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J. Exp. Med. 118: 99-120. https://doi.org/10.1084/jem.118.1.99
  6. Ebrahimpour, A., R. Rahman, D. Ean Chng, M. Basri, and A. Salleh. 2008. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol. 8: 96. https://doi.org/10.1186/1472-6750-8-96
  7. Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
  8. Holland, J. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
  9. Hymavathi, M., T. Sathish, Ch. Subba Rao, and R. S. Prakasham. 2009. Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Appl. Biochem. Biotechnol. 159: 191-198. https://doi.org/10.1007/s12010-008-8438-2
  10. JECFA (Joint FAO/WHO Expert Committee on Food Additives). 2001. Compendium of food additive specifications. General specifications and considerations for enzyme preparations used in food processing. FAO Food Nutr. 52: 37-39.
  11. Kumar, S., V. V. Dasu, and K. Pakshirajan. 2010. Localization and production of novel L-asparaginase from Pectobacterium carotovorum MTCC 1428. Process Biochem. 45: 223-229. https://doi.org/10.1016/j.procbio.2009.09.011
  12. Lapmak, K., S. Lumyong, S. Thongkuntha, P. Wongputtisin, and U. Sardsud. 2010. L-Asparaginase production by Bipolaris sp. BR438 isolated from brown rice in Thailand. Chiang Mai J. Sci. 37: 160-164.
  13. Mashburn, L. and J. C. Jr. Wriston. 1964. Tumor inhibitory effect of L-asparaginase from Escherichia coli. Arch. Biochem. Biophys. 105: 450-452. https://doi.org/10.1016/0003-9861(64)90032-3
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Mishra, A. 2006. Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl. Biochem. Biotechnol. 135: 33-42. https://doi.org/10.1385/ABAB:135:1:33
  16. Pal, M. P., B. K. Vaidya, K. M. Desai, R. M. Joshi, S. N. Nene, and B. D. Kulkarni. 2009. Medium optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: Artificial intelligence verses a statistical approach. J. Ind. Microbiol. Biotechnol. 36: 747-756. https://doi.org/10.1007/s10295-009-0547-6
  17. Pedreschi, F., K. Kaack, and K. Granby. 2008. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 109: 386-392. https://doi.org/10.1016/j.foodchem.2007.12.057
  18. Rai, S. K. and A. K. Mukherjee. 2010. Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48: 173-180. https://doi.org/10.1016/j.bej.2009.09.007
  19. Sarquis, M. I. M., E. M. M. Oliveira, A. S. Santos, and G. L. Costa. 2004. Production of L-asparaginase by filamentous fungi. Mem. Inst. Oswaldo Cruz 99: 489-492. https://doi.org/10.1590/S0074-02762004000500005
  20. Shaffer, P. M., H. N. Jr. Arst, L. Estberg, L. Fernando, T. Ly, and M. Sitter. 1988. An asparaginase of Aspergillus nidulans is subject to oxygen repression in addition to nitrogen metabolite repression. Mol. Gen. Genet. 212: 337-341. https://doi.org/10.1007/BF00334704
  21. Sivapathasekaran, C., S. Mukherjee, A. Ray, A. Gupta, and R. Sen. 2010. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour. Technol. 101: 2884-2887. https://doi.org/10.1016/j.biortech.2009.09.093
  22. Sreenivasulu, V., K. N. Jayaveera, and P. M. Rao. 2009. Optimization of process parameters for the production of Lasparaginase from an isolated fungus. Res. J. Pharmacogn. Phytochem. 1: 30-34.
  23. Tang, Y. J. and J. J. Zhong. 2004. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem. Eng. J. 21: 259-264. https://doi.org/10.1016/j.bej.2004.06.008
  24. Tsuji, Y. 1957. Studies on the amidase. IV. Supplemental studies on the amidase action of the bacteria. Japan Arch. Int. Med. 4: 222-224.
  25. Wei, D. Z. and H. Liu. 1998. Promotion of L-asparaginase production by using n-dodecane. Biotechnol. Tech. 12: 129-131.
  26. Wriston, J. C. Jr. and T. O. Yellin. 1973. L-Asparaginase - A Review. Adv. Enzymol. Relat. Areas Mol. Biol. 39: 185-248.

Cited by

  1. Anticancer activity of fungal l-asparaginase conjugated with zinc oxide nanoparticles vol.26, pp.1, 2012, https://doi.org/10.1007/s10856-015-5380-z
  2. Industrial effluent as a substrate for glutaminase freel-asparaginase production from Pseudomonas plecoglossicida strain RS1; media optimization, enzyme purification and its characterization vol.5, pp.60, 2012, https://doi.org/10.1039/c5ra05507e
  3. Therapeuticl-asparaginase: upstream, downstream and beyond vol.37, pp.1, 2017, https://doi.org/10.3109/07388551.2015.1120705
  4. Multi level statistical optimization of l-asparaginase from Bacillus subtilis VUVD001 vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-017-1020-2
  5. Process‐centric and data‐centric strategies for enhanced production of l‐asparaginase—an anticancer enzyme, using marine‐derived Aspergillus niger vol.32, pp.7, 2012, https://doi.org/10.1002/cem.3024
  6. Purification, Characterization and Anticancer Activity of L-asparaginase Produced by Marine Aspergillus terreus vol.12, pp.4, 2018, https://doi.org/10.22207/jpam.12.4.19
  7. Isolation, Purification, Characterisation and Application of L-ASNase: A Review vol.13, pp.1, 2019, https://doi.org/10.2174/1872208312666181012150407
  8. Screening and optimizing fermentation production of l‐asparaginase by Aspergillus terreus strain S‐18 isolated from the Brazilian Caatinga Biome vol.126, pp.5, 2012, https://doi.org/10.1111/jam.14221
  9. Optimization of aqueous two-phase micellar system for partial purification of L-asparaginase from Penicillium sp. grown in wheat bran as agro-industrial residue vol.51, pp.3, 2012, https://doi.org/10.1007/s42770-020-00269-2
  10. Therapeutic enzymes: Discoveries, production and applications vol.63, pp.None, 2012, https://doi.org/10.1016/j.jddst.2021.102455
  11. Heterologous Expression and Rational Design of l-asparaginase from Rhizomucor miehei to Improve Thermostability vol.10, pp.12, 2021, https://doi.org/10.3390/biology10121346