• Title/Summary/Keyword: Response correction factor

검색결과 98건 처리시간 0.024초

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test (의사정적재하시험 응답보정계수에 의한 교량 해석모델 보정의 타당성 분석)

  • Han, Man-Seok;Shin, Soo-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제25권6호
    • /
    • pp.50-59
    • /
    • 2021
  • Currently, the response correction factor is calculated by comparing the response measured by the load test on a bridge with the response analyzed in the initial analytical model. Then the load rating and the load carrying capacity are evaluated. However, the response correction factor gives a value that fluctuates depending on the measurement location and load condition. In particular, when the initial analytical model is not suitable for representing the behavior of a bridge, the range of variation is large and the analysis response by the calibrated model may give a result that is different from the measured response. In this study, a pseudo-static load test was applied to obtain static response with dynamic components removed under various load conditions of a vehicle moving at a low speed. Static response was measured on two similar PSC-I girder bridges, and the response correction factors for displacement and strain were calculated for each of the two bridges. When the initial analysis model was not properly set up, it is verified that the response of the analytical model corrected by the average response correction factor does not fall within the margin of error with the measured response.

Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays (RW3 고체팬텀에서 고에너지 X-선에 대한 전리함 반응보정인자의 특성에 관한 연구)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Kim, Bu-Gil
    • Journal of radiological science and technology
    • /
    • 제32권2호
    • /
    • pp.205-212
    • /
    • 2009
  • The response correction factor ( h) is a factor to convert the response of the chamber in solid phantom to the response in water. In RW3 solid phantom, the dependency of beam quality and depth for high energy X-rays are known characteristics, however the dependency of field size, SSD, and chamber type are unknown. In this work we have studied the unknown characteristics on the dependency of response correction factor. The farmer type chamber (FC65G) and small chamber (CC13) were used and two beam qualities of 6 and 15 MV were evaluated. The measured response correction factors at the depth of 5 cm and 10 cm were h = 1.015 and 1.021 for 6 MV X-rays, and h = 1.024 and 1.029 for 15 MV X-rays. In conclusion the response correction factor did not depend on the field size and SSD while depending on the beam quality and depth. In the chambers, there are small differences between the two chambers used in this study but we think additional study for more chambers should be required. The results in this study can be used for analyzing the measured values from ionization chamber dosimetry in RW3.

  • PDF

Electric energy saving system with high speed response to load variation using power-factor correction (부하변동에 속응하는 역률개선형 전력절감시스템)

  • Kim, Tae-Soo;Kang, Hyung-Sik;Joo, Kyung-Don;Lyu, Seung-Heon;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2388-2390
    • /
    • 2002
  • Small type electric energy saving system is proposed in this paper. The system improves power factor fastly according to load variation of each customer. Phases of voltage and current are detected as 1[ms] unit. Phase coincident algorithm is applied for power factor improvement. Capacitance is controlled for optimal power factor correction. Series reactor is controlled for harmonics reduction. Non-contact device is used for fast response and long life. Test result shows the effect of this system. Power factor of 40[W] electric fan is improved from 95[%] to 100[%]. In the case of electric light, power factor is improved from 82[%] to 100[%]. Response time for load variation is less than 1[ms].

  • PDF

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator (PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발)

  • Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제56권12호
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.

A study on the characteristics of power factor correction circuits with input active boost converter (입력 능동 부스트 컨버터를 고려한 역률개선회로의 특성분석)

  • Jang, Jun-Young;Lee, Kwan-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.270-272
    • /
    • 2003
  • Switching power supplies are widely used in many industrial fields. Power factor correction(PFC) circuits have tendency to be applied in new power supply designs. The input active power factor correction(APFC) circuits can be implemented using either the two-stage approach or the single-stage approach. The single-stage PFC circuit has advantage to reduce the number of components by eliminating a need for the PFC switch and control circuit. However, unlike in the two-stage approach, the do voltage on the energy storage capacitor in a single-stage PFC circuit is not well regulated. As a result. in universal line application($90{\sim}265Vac$), the storage capacitor voltage varies with the load and line variation. In this paper, the performance of output voltage regulation and transient response are clarified here. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results of 2 [kW] prototype converter.

  • PDF