• Title/Summary/Keyword: Response characteristic

Search Result 1,627, Processing Time 0.04 seconds

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Construction of the I-PD Control System by Multilayer Neural Network (다층 신경망에 의한 I-PD 제어계의 구성)

  • 고태언
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • Many control techniques have been proposed in order to improve the control performance in discrete-time domain control system. In control system using these techniques, the response-characteristic of system is dependent on the gains of the controller. Specially, There is a need to readjust the gain of controller when the response of system is changed by disturbance or load fluctuation. In this paper, I-PD controller and pre-compensator are designed by multilayer neural network. The gains of I-PD controller and pre-compensator are adjusted automatically by back propagation algorithm when the response characteristic of system is changed under a condition. Applying this control technique to the position control system using a DC servo motor as a driver, the control performance of controller is verified by the results of experiment.

  • PDF

The Design of a Pre-Compensator for the Model-Following Control in the I-PD Control System (I-PD 제어계에서 모델추종제어를 위한 전치보상기의 설계)

  • Ha, Hong-Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • Many control techniques have been proposed in order to improve the control performance in the control system. In the feedback control system the output of controller is generally used as the input of a plant But the undesired noise is included in the output of a controller. Therefore, there is a need to use a precompensator for rejecting the undesired noise and improving the response characteristic of a system. In this paper, the design method of a precompensator is proposed for the model following control in the I-PD control system. The proposed precompensator is implemented with a neural network. The games of a precompensator are adjusted automatically to obtain a desired response of a system when the response characteristic of a system is changed under a condition.

The vibration and noise characteristic analysis of the BLDC Axial-gap type motor by using Finite Element Method (FEM 을 이용한 BLDC Axial-gap type 전동기의 진동과 소음 특성 분석)

  • Lee, Taeck-Jin;Park, Jun-Hong;Lee, Sang-Ho;Hong, Jung-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.943-946
    • /
    • 2007
  • The vibration and noise characteristic of the Axial-gap motor for an air conditioner were analyzed. Experimental Modal Analysis was performed to understand the vibration characteristic of the motor. The noise of motor was measured in a dead room. Finite Element Method was performed to find the vibration characteristic of the motor by using ABAQUS program.

  • PDF

Characteristic Analysis & Optimum Design of Permanent Magnet Assisted Synchronous Reluctance Motor for Premium Efficiency Performance (효율 향상을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석과 최적설계)

  • Mun, Sung-Ju;Lee, Tae-Hoon;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.716_717
    • /
    • 2009
  • This paper deals with the characteristic analysis & optimum design of Permanent Magnet Assisted Synchronous Reluctance Motor(PMASynRM) for Premium Efficiency Performance. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively. And optimum design of PMASynRM is performed by Response Surface Methodology(RSM).

  • PDF

Optimal Design of Single-Phase Line-Start Permanent Magnet Synchronous Motor by using Design of Experiment (실험계획법을 이용한 단상 유도형 동기전동기의 최적 설계)

  • Kim, Seung-Joo;Jung, Dae-Sung;Lee, Chul-Kyu;Lee, Hyung-Woo;Lee, Ju;Oh, Se-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.699-704
    • /
    • 2007
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

Dynamic characteristic analysis of SMT mounter system (SMT 마운터의 동특성 분석)

  • Rim, Kyung-Hwa;Jung, Jin-Ho;Beom, Hee-Rak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.440-445
    • /
    • 2011
  • Dynamic characteristic analysis is required in developing SMT mounter system with high installation speed and position precision, because of vibration source occurred by positioning head. This paper presents the method of improving dynamic characteristic of SMT(Surface Mount Technology) mounter with finite element method and modal test. The design direction is that natural frequencies of SMT mounter must be higher than the vibration source. In addition, the effect of input shaping on residual vibration reduction is investigated by simulating the response of a first-order system.

  • PDF