• Title/Summary/Keyword: Response analysis

Search Result 16,066, Processing Time 0.046 seconds

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

Development of Probabilistic Site Coefficient (확률론적 지진계수 개발)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

윈도우즈 GUI 환경을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발

  • 이용희;김석일;이재윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.836-840
    • /
    • 1995
  • Recently, the motor-integrated spindle spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI encironment.

  • PDF

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method (확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

An Analysis on Power Demand Reduction Effects of Demand Response Systems in the Smart Grid Environment in Korea

  • Won, Jong-Ryul;Song, Kyung-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1296-1304
    • /
    • 2013
  • This study performed an analysis on power demand reduction effects exhibited by demand response programs, which are advanced from traditional demand-side management programs, in the smart grid environment. The target demand response systems for the analysis included incentive-based load control systems (2 month-ahead demand control system, 1~5 days ahead demand control system, and demand bidding system), which are currently implemented in Korea, and price-based demand response systems (mainly critical peak pricing system or real-time pricing system, currently not implemented, but representative demand response systems). Firstly, the status of the above systems at home and abroad was briefly examined. Next, energy saving effects and peak demand reduction effects of implementing the critical peak or real-time pricing systems, which are price-based demand response systems, and the existing incentive-based load control systems were estimated.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도응답 해석)

  • 김인학;독고욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Development of Fast-Response CO2 Analyzer and Analysis of Engine-out Emission during Cold Start of SI Engine (고속응답 CO2 분석기의 제작 및 이를 이용한 SI엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Park, Kyoung-Seok;Park, Dong-Sun;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • A fast-response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of a SI engine. The analyzer consists of the non-dispersive infrared absorption method, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it showed 18ms of a response to measure the $CO_2$ concentration. The fast-response $CO_2$ analyzer was applied to a single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for confirming the accuracy of the exhaust gas analysis using the fast-response $CO_2$ analyzer. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated from the $CO_2$ concentration of engine-out emissions and engine operating variables.